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Conditions for MHT to be an
Exact Bayesian Solution to the
Multiple Target Tracking
Problem for
Target-to-Measurement
Association Hypotheses

LAWRENCE D. STONE

This paper finds conditions under which multiple hypothesis

tracking (MHT) is an exact Bayesian solution to the multiple target

tracking problem for target-to-measurement association hypotheses.

The crucial condition is that measurements arrive in scans from one or

more sensors, but otherwise the conditions areminimally restrictive. In

order to produce a computationally feasible implementation of MHT,

some approximations must be made, but this true is for any (existing)

method of producing an exact Bayesian solution. Limiting the num-

ber of hypotheses considered is an example of such an approximation.

This paper is motivated by recent claims that MHT is not theoretically

rigorous or “Bayes optimal.”

I. INTRODUCTION

This paper, which is based on [1], considers the ques-
tion of when multiple hypothesis tracking (MHT) is an
exact Bayesian solution to the multiple target track-
ing problem for target-to-measurement association hy-
potheses, or, more succinctly, when is it exact Bayesian.
By exact, we mean that MHT produces the correct
Bayesian posterior distribution on the targets and their
states. Recently, there have been claims that MHT is not
theoretically rigorous or “Bayes optimal” (see [2, Sec.
10.7.2] and [3]).Ref. [4, Sec.VII] observes that if the ran-
dom finite set (RFS) version of multiple target track-
ing is exact Bayesian, then so are certain special cases
of MHT that can be derived from the RFS formulation.
However, this begs the question as to whether the RFS
formulation is exact Bayesian and whethermore general
versions of MHT are exact Bayesian.

Note, a target-to-measurement association hypothe-
sis is different from a measurement-to-measurement as-
sociation hypothesis that is used in the standard MHT
formulation.

In this paper, we explore the question of when MHT
is exact Bayesian by first stepping back a bit and con-
sidering a more general definition of MHT than is gen-
erally used (see, e.g., [4], [5], and [6]). The plan of this
paper is to proceed from general versions of MHT to
the specific until we arrive at the most commonly used
notions of MHT. This approach has two virtues. First, it
shows that the notion and validity of an MHT decom-
position (defined below) is more general than the usual
notion ofMHT.Second, it highlights the special assump-
tions needed to produce the most common and useful
forms of MHT.

In classical multiple target tracking, the problem is
divided into two steps: association and estimation.Step 1
associates measurements with targets. Step 2 uses the
measurements associated with each target to produce
an estimate of that target’s state. Complications arise
when there is more than one reasonable way to asso-
ciate measurements with targets. MHT approaches this
problem by forming association hypotheses to explain
the source of the measurements. We consider the situ-
ation where each hypothesis assigns the measurements
to targets or false measurements. For each association
hypothesis, MHT computes the probability that the hy-
pothesis is correct and the conditional probability dis-
tribution on the joint target state given the hypothesis is
correct.The Bayesian posterior is amixture of the condi-
tional joint target state distributions weighted by the as-
sociation probabilities. This is the MHT decomposition
of the multiple target tracking problem.

Theoretically, there are other decompositions that
could be used. For example, one could use any set of
mutually exclusive and exhaustive conditions for the
decomposition. What makes the MHT decomposition
special and important is that it is useful. Each element
(hypothesis) of an MHT decomposition specifies which
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measurements are associated with which targets and
which are associated with false measurements. Under
a hypothesis, the multiple target tracking problem be-
comes a much more tractable problem. Usually it be-
comes a set of n single target tracking problems,where n
is the number of targets specified by the hypothesis. The
MHT decomposition transforms a difficult and daunting
multiple target tracking problem into a set of problems
we know how to solve. This was Reid’s key insight [5].

WhileMHT is the most widely usedmethod for solv-
ing multiple target tracking problems, multiple target
tracking is not limited to the classical case described
above. Section II-C includes a brief discussion of multi-
ple target tracking when the notion of associating mea-
surements with targets is not meaningful.

Reid [5] formulated the initial version of MHT that
was later generalized byMori et al. [6]. Since then,many
versions and implementations ofMHT have been devel-
oped (see [4]).

Many of the technical results presented in this pa-
per are based on results from [7, Ch. 4]. However, the
emphasis in this paper is on identifying conditions un-
der whichMHT is an exact Bayesian solution tomultiple
target tracking.

We show that the crucial condition ensuring that
MHT is exact Bayesian is that measurements arrive in
scans as defined below. The additional conditions re-
quired for this result are minimally restrictive. Thus, the
MHT decomposition is exact Bayesian for a wide class
of tracking problems. In order to produce a computa-
tionally feasible implementation, some approximations
must bemade,but this is true of any (existing)method of
producing an exact Bayesian solution. InMHT, the num-
ber of association hypotheses grows exponentially in the
number of measurements, so a typical approximation is
to limit the number of hypotheses considered. In addi-
tion, it is customary to display only the tracks resulting
from the highest probability association hypothesis and
treat them as the “tracking solution.”

Section II provides the basic definitions that we use
for multiple target tracking. Section III proves the basic
result on the validity of the MHT decomposition. The
reader will note in this section that we use a more gen-
eral definition of MHT than is usual. In particular, the
various versions of MHT discussed in [4] are all special
cases of this definition.Section IVpresents additional as-
sumptions that allow theMHT decomposition to be per-
formed recursively, and Section V gives assumptions un-
der which the target state distributions, conditioned on
an association hypothesis, are independent. Section VI
provides a summary of these assumptions. Section VII
provides some conclusions.

II. MULTIPLE TARGET TRACKING

We employ a continuous–discrete formulation of
tracking where the target motion takes place in contin-
uous time, but the measurements are received at a dis-

crete sequence 0 ≤ t1 ≤ · · · ≤ tK of possibly random
times.We represent a single target’s state and its motion
through the target state space S in terms of a stochastic
process {X (t); t ≥ 0}, where X (t) is the target state at
time t.The target state can have both continuous and dis-
crete components. In addition to kinematic components,
there can be components that correspond to “features”
such as color or frequency and source level of an emis-
sion.Targetmotion can include changes in nonkinematic
as well as kinematic components.

A. Multiple Target Motion Process

The multiple target tracking problem begins at t = 0.
The total number of targets is unknown but bounded
by N̄, which is known. We assume a known bound on
the number of targets because it allows us to simplify
the presentation and produces no restriction in practice.
It is possible to remove this restriction but that would
add complications without adding capability.We add an
additional state φ to the target state space S. If a tar-
get is not present in S, we say that it is in state φ. Let
S+ = S ∪ {φ} be the augmented state space for a single
target and S+ = S+ × · · · × S+ be the joint target state
space where the product is taken N̄ times. This is a vec-
tor formulation of the multiple target tracking motion
model. Each component (target) can be indistinguish-
able from the others, or if there is prior knowledge some
components can have different motion models. Both are
possible but neither is required. In the case where the
targets are indistinguishable, the component labels are
arbitrary.The notion of including a state such as φ to rep-
resent target not present in S has precedent in the works
of [8], [9], [10], [11], and [12].

Our prior knowledge about the targets and their
“movements” through the state space S+ is given by
a stochastic process X = {X(t); t ≥ 0}, where X(t) =
(X1(t), . . . ,XN̄(t)) is the state of the system at time t and
Xn(t) ∈ S+ is the state of target n at time t. The term
“state of the system”means the joint state of all the tar-
gets. If Xn(t) = φ, then target n is not present in S at
time t. The motion model can allow for targets to arrive
(transition from φ to S) and depart (transition from S to
φ) as time progresses.

B. Multiple Target Likelihood Functions

Definition.A measurement is a function of a sensor
response.

A sensor response that has crossed a specified thresh-
old and is used to provide an estimate of a target’s posi-
tion is an example of a measurement. A measurement
can be a multivariate function of the sensor response.
An example is a peak-picking algorithm that identifies
the number of peaks that cross a threshold and their lo-
cations. Another example of a measurement is the sen-
sor response itself. This is the identity function applied
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to the sensor response to yield the measurement.An ex-
ample of this is the acoustic times series received at a
hydrophone over an interval of time.

Let the random variableY (t, j) be the measurement
from sensor j at time t.Measurements from sensor j take
values in the measurement space � j that may be differ-
ent for each sensor. We define the multiple target likeli-
hood function l j for sensor j at time t as follows:

l j(t, y|s) = Pr{Y (t, j) = y|X(t) = s} for y ∈ � j,s ∈ S+.

(1)
Note that this likelihood depends on the system state s
at time t. The system state gives the state of each target.
If a target is not present, its state is φ. If false measure-
ments are possible, then a model for these must be de-
fined and used in the calculation of (1).Note that we use
Pr to mean probability or probability density, whichever
is appropriate.

Suppose we have obtained measurements at the dis-
crete times 0 ≤ t1 ≤ · · · ≤ tK ≤ t. Let the random vari-
able Yk be the set of measurements received at time tk
and yk denote a value of Yk. We extend (1) to define

Lk(yk|s) = Pr{Yk = yk|X(tk) = s} for s ∈ S+. (2)

Lk(yk| ·) is the multitarget likelihood function for the
measurement set Yk = yk. If the sensor responses are
correlated or there are restrictions such as a target can
generate at most one measurement in a set, then these
must be taken into account in computing this likelihood
function.

Let Y1:K = (Y1,Y2, . . . ,YK) and y1:K = (y1, . . . ,
yK). These are the measurement sets received at the
times {t1, . . . , tK}.

Define

L(y1:K|s1, . . . , sK)
= Pr

{
Y1:K = y1:K|X (t1) = s1, . . . ,X (tK) = sK

}
. (3)

We assume that the distribution of the measurements at
the times {t1, . . . , tK} depends only on the system states
at these times. That is,

Pr{Y1:K = y1:K|X(u), 0 ≤ u ≤ t} = L (y1:K|s1, . . . , sK) ,

(4)

where sk = X(tk) for k = 1, . . . ,K.

Let

q (s1, . . . , sK) = Pr{X(t1) = s1, . . . ,X(tK) = sK}.
Then, the posterior distribution on the multiple target
state at time tK given Y1:K = y1:K is

p (tK, sK|y1:K) = Pr{Y1:K = y1:K and X(tk) = sK}
Pr{Y1:K = y1:K}

=
∫
L (y1:K|s1, . . . , sK)q (s1, . . . , sK)ds1 · · · dsK−1∫
L (y1:K|s1, . . . , sK)q (s1, . . . , sK)ds1 · · · dsK ,

(5)

where the integral in the numerator of (5) is over the
system states at the first K − 1 measurement times and
the integral in the denominator is over these states at the
first K times.

C. Bayes–Markov Recursion

If the motion model is Markovian so that

q (s1, . . . , sK) =
∫
S+
q0(s0)

K∏
k=1

qk (sk|sk−1)ds0 (6)

where

q0(s) = Pr{X(0) = s},
qk (sk|sk−1) = Pr{X(tk) = sk|X(tk−1) = sk−1},

and the likelihood function in (4) factors so that

L (y1:K|s1, . . . , sK) =
K∏
k=1

Lk(yk|sk),

then the following Bayes–Markov recursion holds:

p (tK, sK|y1:K )

= Lk(yK|sK )
∫
S+ q(sK|sK−1)p(tK−1, sK−1|y1:K−1)dsK−1∫

S+ Lk(yK|sK )
∫
S+ q(sK|sK−1)p(tK−1, sK−1|y1:K−1)dsK−1dsK

.

Observe that the above recursion does not require
the notion of measurement association. The process
of performing multiple target tracking with or without
measurement association is called unified tracking in
[13].Ref. [13,Ch.5] gives examples where two targets are
tracked in a case where the notion of association is not
meaningful. In some cases, the targets are indistinguish-
able and in others not. When association is not mean-
ingful, standard MHT is not applicable to the multiple
target tracking problem.

An example where association is not meaningful in-
volves a fixed array of passive omnidirectional acoustic
hydrophones. The measurement received at the sensor
at time t is the vector of complex amplitudes (as a func-
tion of frequency) of the acoustic time series received
at the hydrophones of the array at time t. When there
is more than one target present, the signals from all tar-
gets are received and acoustically summed at each hy-
drophone so that it does not makes sense to associate
the measurement with a single target. The maximum
posterior probability penalty function (MAP-PF) algo-
rithm, described in [7,Ch. 6], uses the Bayes–Markov re-
cursion above to perform multiple target tracking using
thesemeasurements without association or thresholding
to produce contacts. By avoiding thresholding, one can
utilize more information and provide better tracking so-
lutions than if one is limited to using thresholded data
(e.g., called contacts). The MAP-PF algorithm has been
applied to a number of operational problems (see [7,Ch.
6, refs. 1–5]).

One can sometimes force the problem into an MHT
framework, but the results are suboptimal. In particu-
lar, the results are not Bayes optimal. Ref. [13, Sec. 5.3.2]
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gives an illustration of this and the resulting degradation
of the tracking performance that results.

Ref. [13, Ch. 5] shows that MHT can be derived as a
special case of unified tracking that motivates the name
because the above recursion provides a unified approach
to tracking with or without measurement association.

III. MULTIPLE HYPOTHESIS TRACKING

We take a more expansive definition of MHT than
is normally the case—see [4], for example. In particu-
lar, we do not require targets to be indistinguishable,
or false measurements to be Poisson distributed. We do
not require that the target motion processes be indepen-
dent or Markovian. In addition, Gaussian assumptions
are not required. We do require that measurements ar-
rive in scans as defined below.

A global measurement association hypothesis, de-
fined more precisely in Section III-A, assigns all mea-
surements received up to a given time to targets
or false measurements. These hypotheses are target-
to-measurement hypotheses, which are different from
measurement-to-measurement association hypotheses
used in the standard MHT formulation.

Definition. An MHT is a tracker that computes the
posterior distribution on system state as follows. It iden-
tifies all possible global measurement association hy-
potheses and calculates their probabilities of being true,
computes the conditional target state distributions given
each hypothesis, and forms the posterior distribution
as a mixture of the conditional target state distribu-
tions weighted by the association hypothesis probabil-
ities. This is called theMHT decomposition.

In Section III-B, we show that under the conditions
assumed in Sections II-A and II-B and the assumption
that measurements come in scans, the MHT decompo-
sition produces the exact Bayesian posterior on system
state. That is, it is the exact Bayesian solution, theoreti-
cally correct, and “Bayes optimal.”

However, the MHT decomposition will be of limited
use unless the conditional target state distributions can
be computed recursively and the target state random
variables are independent given a global measurement
association hypothesis. Sections IV and V provide con-
ditions under which these are true.

A. Scans and Global Measurement Association
Hypotheses

Definition.A set of measurements at time tk is a scan
if each measurement is generated by at most one target
and each target generates at most one measurement.We
also require that the association of measurements in dif-
ferent scans is independent.

Note that this definition means that not every mea-
surement is a scan by itself.

Assumption. We assume measurements arrive in
scans.

Some of these measurements may be false measure-
ments, i.e., not generated by a target, and some targets
may not produce measurements on a given scan. Let

Gj = set of measurements in the jth scan,

G(1 : k) = set of measurements in the first k scans

=
k⋃
j=1

Gj.

Definition. A global measurement association hy-
pothesis h on G(1 : k) is a mapping h : G(1 : k) →
{0, 1, . . . , N̄} such that

h(m) = n > 0 means measurement
m is associated with target n,

h(m) = 0 means measurement
m is associated with a false measurement,

and no target has more than one measurement per scan
associated with it.

Let H(k) = set of global measurement association
hypotheses on G(1 : k). A hypothesis h ∈ H(k) parti-
tions G(1 : k) into disjoint subsets

�k(n) = {m ∈ G (1 : k) : h(m) = n} for n = 0, 1, . . . , N̄,

where �k(n) is the subset of measurements associated
with target n for n > 0 and �k(0) is the subset of mea-
surements associated with false measurements.

B. MHT Decomposition

MHT calculates the posterior distribution on system
state at time tK given the global measurement associa-
tion hypothesis h is true and the probability α(h|y1:K)
that hypothesis h is true given Y1:K = y1:K for each
h ∈ H(K). Specifically, it computes

p(tK, sK|h ∧ y1:K) = Pr{X(tK) = sK|h ∧ Y1:K = y1:K}
(7)

and

α (h|y1:K) = Pr{h|Y1:K = y1:K} = Pr{h ∧ Y1:K = y1:K}
Pr{Y1:K = y1:K} ,

(8)

where ∧ denotes conjunction. The Bayesian posterior is
given by

p(tK, sK|y1:K) =
∑

h∈H(K)

p(tK, sK|h ∧ y1:K)α(h|y1:K). (9)

Equation (9) is the MHT decomposition. The valid-
ity of this decomposition depends only on the assump-
tions in Sections II-A, II-B, and III-A. Thus, MHT is an
exact Bayesian solution under very general assumptions.
Themain restriction is that measurements must arrive in
scans. However, in most cases, we require more assump-
tions to compute MHT solutions.
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IV. RECURSIVE MHT ASSUMPTIONS

In this section, we add assumptions that allow us to
compute the MHT decomposition recursively. We as-
sume the motion model is Markovian in the joint state
space and that

L(y1:K|s1, . . . , sK) =
K∏
k=1

Lk(yk|sk). (10)

Let the Markov transition function be denoted by

qk(sk|sk−1) = Pr{X(tk) = sk
∣∣X(tk−1) = sk−1 } for k ≥ 1

and q0 be the probability (density) function for X(0).
Then, we can compute the posterior distribution in (5)
using the classic Bayes–Markov recursion as follows.

Initial distribution:

p(t0, s0) = q0(s0) for s0 ∈ S+. (11)

For k ≥ 1 and sk ∈ S+,

p−(tk, sk|y1:k−1) =
∫
qk(sk|sk−1)p(tk−1, sk−1|y1:k−1)dsk−1,

Lk (yk|sk) = Pr{Yk = yk|X (tk) = sk},

p(tk, sk|y1:k) = 1
C
Lk(yk|sk)p−(tk, sk|y1:k−1), (12)

where

C =
∫
Lk(yk|sk)p−(tk, sk|y1:k−1)dsk.

A. Scan and Global Measurement Association
Hypotheses

For the kth scan of measurements yk, letMk= num-
ber of measurements in the scan.

Definition.A function γ : {1, . . . ,Mk} → {0, . . . , N̄}
is a scan association hypothesis if γ (m) = n > 0 means
measurement m is associated with target n, γ (m) = 0
means measurement m is associated with a false mea-
surement, and no two measurements are assigned to the
same positive number (target).

Let

�k = the set of all scan association hypotheses on scan Yk.

A global measurement association hypothesis hK ∈
H(K) is composed of K scan association hypotheses
{γ1, . . . , γK}, where γk is the association hypothesis for
the kth scan. The global measurement association hy-
pothesis hK is an extension of hK−1 = {γ1, . . . , γK−1} ∈
H(K − 1). That is, hK is composed of hK−1 with γK ap-
pended.We write this as hK = hK−1 ∧ γK.

1) Scan Association Likelihood Function: Define the
scan association likelihood function

�k (yk|γ ∧ sk) = Pr{Yk = yk|γ ∧ X(tk) = sk} for

sk ∈ S+ and γ ∈ �k. (13)

The conditioning on the right-hand side of (13) means
that we are conditioning on the scan association hypoth-
esis γ as well as the system state sk.

As a function of sk, the likelihood of the scan mea-
surement computed in (13) accounts for the probability
of detecting the targets with whichmeasurements are as-
sociated, failing to detect the remaining targets, and the
false measurements.The likelihood function for the scan
Yk = yk is

Lk (yk|sk) =
∑
γ∈�k

�k (yk|γ ∧ sk) Pr{γ } for sk ∈ S+, (14)

where on the right-hand side of (14) we assume that the
(prior) probability of a scan association does not depend
on the system state.

2) Global Measurement Association Likelihood Func-
tion: From (10), it follows that conditioned on h ∈
H(K), the likelihood of the measurements received at
times t1, . . . , tK depends only on the system state values
at those times. Specifically, the global measurement as-
sociation likelihood function l is

l (y1:K|h ∧ (s1, . . . , sK))

= Pr{Y1:K = y1:K|h ∧ X(u) = su; 0 ≤ u ≤ tK}
= Pr{Y1:K = y1:K|h ∧ X(tk) = sk;k = 1, . . . ,K}. (15)

We assume that the scan association likelihoods are in-
dependent given h ∧ (s1, . . . , sK), so that

l (y1:K|h ∧ (s1, . . . , sK)) =
K∏
k=1

�k (yk|γk ∧ sk). (16)

Finally,we assume that the prior probability of the global
measurement association hypothesis h is equal to the
product of the prior probabilities of its constituent scan
association hypotheses. Specifically,

Pr{hK} =
K∏
k=1

Pr{γk}, where h = {γ1, . . . , γK}. (17)

Association probabilities:Define

C(h0) = 1 and C(hK) = Pr{hK ∧ Y1:K = y1:K} for K ≥ 1.

(18)

Ref. [7, Sec. 4.5.1] shows that

C(hK) = C(hK−1) Pr{γK}

×
∫

�K (yK|γK ∧ sK) p− (tK, sK|hK−1 ∧ y1:K−1)dsK

(19)

and that the probability of the global measurement as-
sociation h ∈ H(K) being correct given y1:K is

α(h|y1:K) = C(h)∑
h′∈H(K)C(h′)

. (20)
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B. Recursive Calculation of MHT Decomposition

Under the above assumptions, ref. [7, Sec. 4.2.5]
shows how the conditional target state distribution in (7)
and the association hypothesis probabilities in (8) may
be calculated recursively. This allows us to calculate the
MHT decomposition in (9) in a recursive fashion.

V. INDEPENDENT MHT

In this section, we give additional assumptions that
assure that the conditional target state distributions are
independent so that p(tK, sK|h ∧ y1:K) in (9) equals the
product of independent probability distributions on the
N̄ possible targets. In this case, the MHT decomposition
in (9) becomes

p(tK, sK|y1:K) =
∑

h∈H(K)

α(h|y1:K)p(tK, sK|h ∧ y1:K)

=
∑

h∈H(K)

α(h|y1:K)
N̄∏
n=1

pn(tK, xn|h ∧ y1:K)

for sK = (x1, . . . , xN̄ ) ∈ S+, (21)

where pn(tK, ·|h ∧ y1:K) is the marginal distribution on
target n. If target n is not present at time tK under hy-
pothesis h, then pn(tK, φ|h ∧ y1:K) = 1.

A. Conditionally Independent Association Likelihoods

Definition. The likelihood of a scan Yk = yk ob-
tained at time tk is conditionally independent if and only
if for all scan association hypotheses γ ∈ �k,

�k (yk|sk = (x1, . . . , xN̄ ) ∧ γ )

= Pr{Yk = yk|γ ∧ X(tk) = (x1, . . . , xN̄ )}

= gγ

0 (yk)
∏N̄

n=1
gγ
n(yk, xn) (22)

for some functions gγ
n, n = 0, . . . , N̄, where gγ

0 can de-
pend on the scan measurements but not sk. For n > 0,
gγ
n(yk, ·) is typically the likelihood function for the mea-
surement in yk that is associatedwith target n,whichmay
be no measurement, and gγ

0 (yk) is the probability of re-
ceiving the false measurements and measurements gen-
erated by targets as specified by the scan association hy-
pothesis γ .

B. Independence Theorem

Under the assumptions of conditional independence
of the scan association likelihood functions and indepen-
dence of the target motion models, MHT decomposes
the multiple target tracking problem into N̄ indepen-
dent single target problems by conditioning on a global
measurement association hypothesis. Let qnk(sn,k|sn,k−1)
be the transition function at time tk for target n for n =
1, . . . , N̄. The following theorem and proof are from [7].

Independence theorem. Suppose the prior target motion
processes are mutually independent so that the multiple
target transition function factors as follows:

qk (sk|sk−1) =
N̄∏
n=1

qnk (sn,k|sn,k−1) (23)

and the scan association likelihood functions are condi-
tionally independent. Then, the posterior system state dis-
tribution conditioned on a global measurement associ-
ation hypothesis is the product of independent distribu-
tions on the targets’ states.

Proof. Let Y1:K = y1:K be the scan measurements
that are received at times 0 ≤ t1 ≤ · · · ≤ tK ≤ t. Recall
that H(k) is the set of all global measurement associa-
tion hypotheses on the first k scans.We wish to show for
k = 1, . . . ,K that

p(tk, sk|h ∧ y1:K) =
N̄∏
n=1

pn(tk, xn|h ∧ y1:K) for h ∈ H(k)

and sk = (x1, . . . , xN̄ ) ∈ S+, (24)

where

pn (tk, xn|h ∧ y1:K) = Pr{Xn(tk) = xn|h ∧ Y1:K = y1:K}
for xn ∈ S+ and n = 1, . . . , N̄.

We will prove the theorem by induction.
k = 1:We first show that (24) holds for k = 1. By the

independence of the prior target motion processes,

p(0, s) =
∏N̄

n=1
pn(0, xn) for s = (x1, . . . ,xN̄ ) ∈ S+,

where pn(0, · ) is the initial state distribution on target n.
Since themotionmodels for the targets are independent,
the joint distribution at time t1 before updating for the
scan of measurements Y1 = y1 is

p−(t1, s1) =
∏N̄

n=1
p−
n (t1, xn) for s1 = (x1, . . . ,xN̄ ) ∈ S+,

where p−
n (t1, · )is the motion-updated distribution for

target n at time t1.A global measurement association hy-
pothesis,h ∈ H(1), is equal to a scan association hypoth-
esis γ ∈ �1. By the conditional independence assump-
tion, the likelihood function for the scan Y1 factors into
functions that depend only on the state of a single target
and are independent of the state of the other targets.

To compute the posterior given Y1 = y1 and the as-
sociation h = γ ,we follow the recursion in (11) and (12)
that clearly holds when we condition on a measurement
association hypothesis.Wemultiply the motion-updated
multiple target distribution at time t1 by the likelihood
function for Y1 = y1, both conditioned on γ , to obtain

p(t1, s1|γ ∧ y1) ∝ gγ

0 (y1)
∏N̄

n=1
gγ
n(y1, xn)

∏N̄

n=1
p−
n (t1, xn)

∝ gγ

0 (y1)
∏N̄

n=1

[
gγ
n(y1, xn)p

−
n (t1, xn)

]

for s1=(x1, . . . ,xN̄ ) ∈ S+. (25)
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Weobtain pn(t1, xn|γ ∧y1), the marginal distribution
on the state of target n, by integrating the right-hand side
of (25) over all components except xn and normalizing
to obtain a probability distribution. The result is

pn(t1, xn|γ ∧ h1) ∝ gγ
n(y1, xn)p

−
n (t1, xn)

for n = 1, . . . , N̄,

and we see that (24) holds for k = 1.
k implies k + 1: Suppose that (24) holds for the first

k scans. Consider a global measurement association hy-
pothesis hk+1 ∈ H(k+1).Then,hk+1 = {hk∧γ } for some
hypothesis hk ∈ H(k) and scan hypothesis γ ∈ �k+1.

Define

p−(tk+1, ·|hk ∧ y1:k) = distribution on X(tk+1)

given hk ∧ y1:k.

This distribution is obtained by performing the motion
and information updates for the first k scans and themo-
tion update only from time tk to tk+1. For target n, we
define

p−
n (tk+1, ·|hk ∧ y1:k) = distribution on Xn(tk+1) given

hk ∧ y1:k.

By assumption, the targetmotion processes are indepen-
dent.From this and the fact that (24) holds for k,we have

p− (tk+1, sk+1|hk ∧ y1:k) =
∏
n

p−
n (tk+1, xn|hk ∧ y1:k) .

To obtain the posterior system state distribution at time
tk+1, we multiply p−(tk+1, sk+1|hk∧y1:k) by the scan like-
lihood function conditioned on γk+1 to obtain

p (tk+1, sk+1|hk+1 ∧ y1:k+1)

= 1
C
gγk+1
0 (yk+1)

∏
n

gγk+1
n (yk+1, xn)

∏
n

p−
n (tk+1, xn|hk ∧ y1:k)

= 1
C
gγk+1
0 (yk+1)

∏
n

gγk+1
n (yk+1, xn) p−

n (tk+1, xn|hk ∧ y1:k)

for sk+1 = (x1, . . . ,xN̄ ) ∈ S+.

This shows that if (24) holds for k, then it is true for
k + 1. Since we have shown that (24) holds for k = 1,
the theorem is proved by mathematical induction.

VI. SUMMARY OF ASSUMPTIONS

In this section,we provide a summary of the assump-
tions wemade to ensure the validity of theMHT decom-
position, the recursive computation of the MHT decom-
position, and the independence of the posterior distribu-
tions on the targets given a global measurement associ-
ation hypothesis. In each case, MHT produces an exact
Bayesian solution. The assumptions are cumulative; e.g.,
the assumptions in Section VI-B implicitly include those
in Section VI-A.

A. Assumptions for Validity of MHT Decomposition
� Continuous discrete formulation:Targets move in con-
tinuous time but measurements are received at a dis-
crete set of times {t1, . . . , tK}.

� Target evolution:Prior knowledge of themotion of the
targets in state space is specified by a stochastic pro-
cess.

� Scan assumption:Measurements are received in scans
at the discrete times {t1, . . . , tK}.

� Measurements at tk depend only on system state at
tk, and we can calculate the multiple target likelihood
function in (3).

B. Assumptions for Recursive Computation of MHT
Decomposition

� Target motion process is Markovian in system state.
� Measurement likelihood functions factor over scans:

L(y1:K|s1, . . . , sK) =
K∏
k=1

Lk(yk|sk),

l (y1:K|h ∧ (s1, . . . , sK)) =
K∏
k=1

�k (yk|γk ∧ sk).

� Prior on global measurement association hypotheses
factors:

Pr{h} =
∏K

k=1
Pr{γk}, where h = {γ1, . . . , γK}.

C. Assumptions for Independent Conditional Target
State Distributions

� Prior motion models are independent, i.e.,

qk (sk|sk−1) =
N̄∏
n=1

qnk (sn,k|sn,k−1).

� Scan likelihood functions are conditionally indepen-
dent, i.e.,

�k (yk|γ ∧ sk = (x1, . . . , xN̄ )) = gγ

0 (yk)
∏N̄

n=1
gγ
n(yk, xn).

D. Comments

Looking at the assumptions for the validity of the
MHT decomposition in Section VI-A, we see that only
the scan assumption puts any substantial restriction
on the class of problems for which MHT is the exact
Bayesian solution. The assumptions in Sections VI-B
and VI-C make explicit the assumptions made in most
multiple target tracking problems to make them more
computationally tractable.Most versions of MHT make
the further assumption that the false alarm process is
Poisson and that the motion and measurement mod-
els are linear Gaussian, at least approximately, so that
a Kalman filter can be used to calculate target state
distributions.
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VII. CONCLUSIONS

From the above discussion, we see that the MHT
decomposition produces the exact Bayesian solution
to the multiple target tracking problem for target-to-
measurement hypotheses under quite general assump-
tions. The main requirement is that measurements ar-
rive in scans. In order to compute the decomposition re-
cursively and to obtain independent conditional target
distributions, we add the Markovian and independence
assumptions given in Sections IV andV.Section VI sum-
marizes these assumptions. Although the MHT decom-
position applies to a great many multiple target tracking
problems, it does not apply to all of them. Both unified
fusion of [13, Ch. 5] and the RFS approach of [2] deal
with problems beyond the purview of MHT.

Because the number of global measurement asso-
ciation hypotheses grows exponentially in the number
of measurements received, implementation of an MHT
algorithm requires approximations such as limiting the
number of global association hypotheses or using a
track-oriented approach (see [4]). This problem is not
unique to MHT.All (existing) methods of producing an
exact Bayesian solution require approximations of some
sort to produce a computationally feasible algorithm for
even modestly complex multiple target tracking prob-
lems.
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