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This paper develops an Object Extraction (OE) algorithm from a

remote sensor in the presence of multipath propagation between the

sensor and the object. The OE is carried out by estimating the ob-

ject’s motion parameter by fusing the multipath measurements. The

signals from the object are assumed to have a low signal-to-noise ratio

i.e., the OE has to be done in the presence of numerous spurious de-

tections. This paper also discusses a method to reduce the size of the

motion parameter space by considering the object’s motion in a non-

inertial frame. The object is observed using a measurement model that

produces range, azimuth, and range-rate using a multipath refraction

model for the signal propagation through the medium. The OE ac-

counts for the multipath environment as the model allows for multiple

returns from a single object. Finally, the paper shows the effectiveness

of the OE by evaluating the accuracy of the estimation with Monte

Carlo simulation.

I. INTRODUCTION

There have been many approaches to extracting ob-
ject state or motion parameters from sensor data in a
cluttered environment. Some of these solutions use a
probabilistic data association filter (PDAF) [7], a multi-
path PDAF [20], or extensions of the multiple hypothe-
sis tracker (MHT) such as the multiple detection MHT
[23]. Our solution is to use the Object Extractor (OE),
based on the maximum likelihood probabilistic multiple
hypothesis tracker (ML-PMHT). This method creates
a likelihood function (LF) for the motion parameters,
based on the data and the object’s measurement model.
This LF is thenmaximized to produce the most likely set
of parameters for that object’s motion. This method is
attractive because the data association in this algorithm
is implicit. Furthermore, as the number of scans is in-
creased, the ML-PMHT is the only algorithm that does
not suffer a combinatorial explosion in computational
complexity. Lastly, the OE is shown to have the ability
to extract very low signal-to-noise ratio (SNR) objects
from cluttered observations. This was shown explicitly
for multiple objects in a multipath environment with the
development and evaluation of the joint multipath ML-
PMHT [24].

The present work extends the previous multipath
works [8], [21] in two vital ways.The first is that themulti-
pathmeasurement fusion has been enhanced for realism
through the use of coordinate system transformations.
This has been exemplified through the use of an atmo-
spheric refraction model [4]. The second notable exten-
sion relates to the number of target parameters.Whereas
previous treatments explored low-dimensional parame-
ter spaces (straight-line motion), we add acceleration in
three dimensions. In our examples, we explore a model
with significant centripetal acceleration, drag, and grav-
ity.The drag on these objects will bemodeled to increase
linearly with its centripetal acceleration, and gravity is
constant in magnitude and radially toward the origin.
The motion of such objects cannot be approximated as
straight line segments and coordinated turns as has of-
ten been done in previous works [21] and thus requires
a large number of parameters to accurately predict their
motion [26].This has the potential to cause the optimiza-
tion involved in the OE to become computationally in-
tractable due to ill-conditioning.

The measurement model considered in this work ex-
ploits the phenomenon where alterations to the signal
return path permits the sensor to detect objects that are
beyond the sensor’s line of sight. This phenomenon re-
sults in the signal propagating along several paths from
the originating point to an object and vice versa for the
reflected signal. This allows for multiple returns from a
single object during one scan, causing an ambiguity as
to which detection belongs to which path [27]. Further
increasing the difficulty of determining the object’s mo-
tion parameters, there are false detections causing spu-
rious measurements (clutter) from all paths. The OE
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algorithm has been extended to operate in a multiple
path formulation, presented in [21]. This extension re-
lies on the fact that the OE natively assumes that any
number of measurements may associate to an object
and modifies the fusion of measurements by allowing
for different measurement models (one for each path)
with associated prior probabilities. Another algorithm
that takes advantage of the multipath measurements
considered in this work is the multiple detection maxi-
mum likelihood probabilistic data association (MD-ML-
PDA),an extension of the standardmaximum likelihood
probabilistic data association to associate multiple mea-
surements to a single object. The development and eval-
uation of the MD-ML-PDA can be found in [25].

This work seeks to solve the problem of motion pa-
rameter extraction for an object executing a complex co-
ordinated turn outside line of sight of the sensor and
in a multipath environment. In Section II, we describe
the motion model which will be considered determin-
istic and nonlinear during a batch of sensor data. We
also define a reference frame conversion that defines
the object’s motion and allows for the use of a smaller
object motion parameter vector during extraction. In
Section III, we introduce the multipath measurement
model that uses a refraction function to calculate the
range and range-rate measurements. We also provide a
method for thresholdingmeasurements to limit the com-
putational load of the OE in this section. Section IV
describes the operation of the OE algorithm used to
process these measurements, and explains how it is ex-
tended to the multipath scenario. Finally, in Section V,
we present and discuss simulation results to test the al-
gorithm’s effectiveness in tracking these objects.

II. OBJECT MOTION MODEL

The kinematic motion model for the objects we con-
sider here is three-dimensional (3D) and uses a modi-
fied coordinated turn model. The objects are assumed
incapable of thrust during the period of observation and
therefore we will not model this. The object is under the
influence of gravity that is taken to be constant and equal
to that at Earth’s surface (i.e., g= 9.81m/s2).We use the
Earth-centered, Earth-fixed (ECEF) coordinate system,
which is a Cartesian system with the origin at the center
of the earth [15]. The motion model must describe the
propagation of the position and velocity of the object.
We define a stacked vector of these values as

θ (t) = [x(t) y(t) z(t) vx(t) vy(t) vz(t)
]′

, (1)

with the initial values denoted θ0. The components of an
object’s acceleration due to radial gravity are

gx(t) = −gx(t)
r(t)

, gy(t) = −gy(t)
r(t)

, gz(t) = −gz(t)
r(t)

,

(2)

where r(t) is the distance from the object to the origin,
i.e.,

r(t) =
√
x2(t) + y2(t) + z2(t). (3)

Next, the drag component of the object’s acceleration
has magnitude

|adrag(t)| = Cdρ(r)AXS2(t)
2mt

, (4)

whereCd is the drag coefficient,AX is the object’s cross-
sectional area,mt is the object’s mass, and S is the speed
of the object, namely,

S(t) =
√

v2
x(t) + v2

y(t) + v2
z(t). (5)

In an effort to limit the computational complexity, we
lower the parameter space by assuming parameters re-
lated to drag to be known.During a turn, the drag expe-
rienced by an object increases due to the aerodynamic
effectors used.Wemodel this bymodifyingCd to linearly
increase with the centripetal acceleration (other models
can be used as well). Specifically, the drag coefficient in-
creases such that an acceleration of ac = 10g causes the
drag to increase by 20%, i.e.,

Cd = Cd0

(
1 + ac

50g

)
, (6)

whereCd0 is the drag coefficient for the object flying in a
straight line. Lastly, ρ(r) is the density of the medium as
a function of object’s position. The density of the prop-
agation medium is modeled as a first-order differential
equation with exponential solution

ρ(r) = ρ0 exp
[
− r(t) − R

r0

]
, (7)

where ρ0 and r0 are constants defined for the medium
and R is Earth’s radius (about 6371 km). With this defi-
nition, the acceleration of the object due to drag (in the
x-coordinate, but it is similar in y and z-coordinates) is

ax,drag = −|adrag(t)|vx(t)
S(t)

. (8)

Finally, we need to model the centripetal acceleration
due to a turn in 3D space. The turn is defined by a vec-
tor of orthogonal turn-rates described within the global
(ECEF) reference frame andwe denote this vector (with
units in rad/s) as

�G(t) = [ωG
x (t) ωG

y (t) ωG
z (t)
]′

, (9)

where the superscript G indicates the global reference
frame. The way that these turn rates relate to the con-
stant turn rate within the object’s reference frame will
be described in the next subsection. The centripetal ac-
celeration is then

ac(t) = �G(t) × [ vx(t) vy(t) vz(t)
]′

, (10)

where × indicates the vector cross product. This cross
product can be expressed using a skew-symmetricmatrix

FUSION OF MULTIPATH DATA FROM A REMOTE SENSOR FOR OBJECT EXTRACTION 115



to pre-multiply the velocity vector. Here, this matrix is
denoted asK�(t) and allows the centripetal acceleration
to be written as

ac(t) =

⎡
⎢⎢⎣

0 −ωG
z (t) ωG

y (t)

ωG
z (t) 0 −ωG

x (t)

−ωG
y (t) ωG

x (t) 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
K�(t)

⎡
⎢⎢⎣

vx(t)

vy(t)

vz(t)

⎤
⎥⎥⎦ .

(11)
The state vector θ (t) changes according to these

time-varying accelerations and can be concisely ex-
pressed using a block partitioned matrix as

θ̇ (t) =
⎡
⎣ 03×3 13×3

−g
r(t) I3×3 K�(t) − −|adrag(t)|

S(t) I3×3

⎤
⎦ θ (t). (12)

This equation is a non-linear differential equation, so to
produce trajectories,we use a fourth-orderRunge–Kutta
method [22] with a sufficiently small step size δ to ap-
proximate the truemotion observed during the sampling
period of T , i.e.,

θT (i) = θ (iT ). (13)

Further accelerations, caused by the use of a non-
inertial (ECEF) reference frame include the Coriolis ef-
fect and a centrifugal acceleration. These accelerations
were found to be insignificant compared to the cen-
tripetal acceleration from turns (and the other forces
considered). They are thereby omitted for the sake of
model simplicity, but the correction may be included in
future works.

A. Reference Frame Conversions

While the turn rate observed in the global ECEF
reference frame is constant in magnitude (i.e., the cen-
tripetal acceleration is constant), the component vectors
(ωG

x (t), etc.) are constantly changing. Furthermore, the
object can only perform pitch and yaw turns, and zero
roll maneuvers (according to our assumption of a point
object). Pitch and yaw turns are represented by turn
rates ωO

x and ωO
y , respectively, where the superscript O

indicates the object’s reference frame.We wish to stress
that these values are assumed to be constant parame-
ters in the object’s reference frame during the (relatively
short) batch length, so there is no time dependence on
these values (compared to the global reference frame
values). These can be arranged into a vector, similar to
�G(t), as

�O(t) = [ωO
x ωO

y 0
]′

. (14)

In order to convert between the two reference
frames, we use a time-varying conversion matrix. In
keeping with convention, as well as our above defini-
tions, the z-axis in the object’s reference frame is the di-
rection of its velocity at any time. Formally, the z-axis
unit vector in ECEF coordinates is the unit vector of the

velocity, i.e.,

�1zO (t) = 1
S(t)

[
vx(t) vy(t) vz(t)

]′ = �1v(t). (15)

We also define the x-axis in the object’s reference frame
to be the direction of a perpendicular “right turn” vector
(in the local vertical plane) from the object’s perspective.
Specifically, we construct the object’s reference frame
x-axis in ECEF coordinates using the object’s’s current
velocity and position as follows:

�1r(t) = 1
r(t)

[
x(t) y(t) z(t)

]′
, (16)

�1xO (t) =
�1v(t) ×�1r(t)∣∣∣�1v(t) ×�1r(t)

∣∣∣ , (17)

where × denotes the cross-product.
Naturally, the object reference frame y-axis in ECEF

coordinates is then calculated as

�1yO (t) = �1zO (t) ×�1xO (t). (18)

It is important to note that the basis vectors in the
object’s reference frame (�1xO (t), �1yO (t), �1zO (t)) are time-
varying.

With these axes defined in ECEF coordinates,we can
create the matrix that will transform coordinates from
the global ECEF reference frame, to the object’s refer-
ence frame as a matrix containing these rotated basis
vectors.

RG→O(t) =
[
�1xO (t) �1yO (t) �1zO (t)

]
. (19)

Finally, we can define the global turn rates in terms
of the constant object’s reference frame turn rates as

�G(t) = RG→O(t)′�O, (20)

where wemake use of the fact thatRG→O(t) is unitary to
perform the inverse reference frame change operation.

The above transformation has two useful aspects.
The first is that it allows us to describe the motion that
is fundamentally a time-varying turn rate vector in the
global reference frame as a constant turn rate vector in
the object’s reference frame and a time-varying, but sim-
ple to calculate, transformation matrix. Secondly, for an
object where the roll component of the turn rate vector is
always zero, this also allows one to circumvent the need
to determine a time-varying, 3D global turn rate vector
at each scan and instead look to determine the constant
two-dimensional turn rate vector in the object’s frame of
reference. This second aspect leads to a reduction in the
number of parameters needed to describe the object’s
motion in a global reference frame via the addition of a
transformation that depends on the motion parameters
at each scan, i.e., the object’s global velocity and posi-
tion relate the three non-zero global turn rates with the
object’s two non-zero local turn rates.
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Fig. 1. ROC for the amplitude thresholding described in Section III.
The SNRs provided are values of γ as the amplitude ratio. The

corresponding decibel values of γ are −3 dB, 0 dB, 3 dB, and 10 dB.

III. SENSOR MEASUREMENT MODEL

Our sensor measurement model will only consider
returns from two elevations that produce three paths in a
multipath scenario. This is the smallest number of paths
for a validmultipath development,but the extension to a
greater number of paths is conceptually straightforward
and increases the algorithm’s complexity linearly. The
measurements we receive from the sensor are range (r),
range-rate (ṙ), azimuth (α), and amplitude (A). At time
step k,we index themth set (vector) of measurements as

zm(k) = [rm(k) ṙm(k) αm(k) Am(k)]
′
. (21)

The amplitudes are generated according to a Swerling I
model [3] where the probability density function (pdf) of
the amplitude for object absent and object present (in a
resolution cell) are, respectively,

p0 (A) = A exp
{
−A2

2

}
A ≥ 0, (22)

p1 (A) = A
1 + γ

exp
{
− A2

2(1 + γ )

}
A ≥ 0, (23)

where γ is the expected SNR (power ratio) in a reso-
lution cell. We use the amplitude feature to reduce the
number of measurements sent to the OE via threshold-
ing. Specifically, for any threshold τ , the probabilities of
detection (PD) and false alarm (PFA) are calculated as

PFA =
∫ ∞

τ

p0 (A) dA, (24)

PD =
∫ ∞

τ

p1 (A) dA. (25)

The detection performance in this situation is easily
characterized by the receiver operating characteristic
(ROC) curves in Fig. 1. These values are then used to

calculate the amplitude pdfs (after thresholding), which
are

pτ
0 (A) = 1

PFA
p0 (A) A ≥ τ, (26)

pτ
1 (A) = 1

PD
p1 (A) A ≥ τ. (27)

The range and range rate portions of each measure-
ment are calculated via a 3D path calculation function.
These calculations are performed by an exogenous soft-
ware with knowledge of the propagationmedium [1], [4],
[13]. We choose an operating frequency for the sensor
of 15 MHz and restrict the number of round-trip paths
the signal may travel on to four.White Gaussian noise is
added to the range, range rate, and azimuth parts of the
measurement vector.Due to the difference between how
noise affects different parts of the measurements, we
present a modified measurement vector, with the ampli-
tude component removed, to be used separately. There-
fore, define the truncated measurement vector contain-
ing the kinematic components as

z∗
m(k) = [rm(k) ṙm(k) αm(k)]

′
. (28)

The covariance matrix of the truncated measurement
vector z∗

m(i) is

R =

⎡
⎢⎢⎣

σ 2
r 0 0

0 σ 2
ṙ 0

0 0 σ 2
α

⎤
⎥⎥⎦ . (29)

The noise is additive in the measurement (range, rate-
rate, and azimuth) space, and the motion is deterministic
given the initial state, therefore the equation for a object-
originated measurement is

z∗
m(k) = h� ( f (x,k)) + N ([0 0 0]′ ,R

)
, (30)

whereN (μ,R) is a multi-variate Gaussian with mean μ

and covariance matrixR,h� (·) is the measurement func-
tion for path l that produced measurement m (supplied
by the 3D path calculation function described above,
IONORT), applied to the putative location vector pro-
duced by the function f (x,k) (produced by the fourth-
order Runge–Kutta method in (13)), and x is the stacked
vector consisting of θ0 and the non-zero parts of �O,
namely,

x = [θ ′
0 �O ′]′. (31)

IV. OBJECT EXTRACTOR

The OE, an extension of the maximum-likelihood
probabilistic multi-hypothesis tracker (ML-PMHT), is a
batch estimation algorithm that effectively creates a pa-
rameter optimization problem for the OE problem. The
OE algorithm constructs the object state LF based on a
batch of measurements using a number of assumptions
about the data. The maximum of the LF occurs at the
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OE estimate of the parameter vector. The assumptions
are:

� The number of objects is known (in this work,we con-
sider only one object).

� Any number of measurements may be associated to
an object (here, up to four are truly possible).

� The object’s motion is deterministic during the (typi-
cally short) batch of measurements, given the object’s
motion parameters.

� False detections are distributed uniformly in space
and Poisson in cardinality, i.e., a spatial Poisson pro-
cess (this may be relaxed).

� Measurement noises are Gaussian, temporally white
(conditioned on the parameter vector), and Rayleigh
in amplitude (again, the amplitude assumptionmay be
relaxed).

With these assumptions, we build the log-likelihood
function (LLF) that can then bemaximized over the (ini-
tial) object state x from (31) to provide an estimate x̂ that
can be used to determine the object’s trajectory (because
of the deterministic trajectory assumption).

We will now describe the construction of the LF that
forms the basis for the multi-path OE algorithm. First,
we define the batch of measurements considered by the
OE. Only measurements above the threshold defined
above during a window of Nw time steps are used. The
set of these measurements is defined as

Z �
{{
z∗
m(i)
}Ni

m=1

}NW

i=1
. (32)

The LLF of the object motion parameter vector x based
on Z is then the log of the conditional pdf of the batch.
Namely,

λ(x;Z) = ln (p (Z|x))

= ln

{
Nw∏
i=1

Ni∏
m=1

p
(
z∗
m(i)
∣∣x)
}

=
Nw∑
i=1

Nm∑
m=1

ln
{
p
(
z∗
m(i)
∣∣x)} . (33)

This is a sum over the log of the likelihoods of x based on
each measurement. The LLF is then further expanded
by considering each measurement to be from the object-
present scenario (hypothesis H1), with prior probability

1, or the object-absent scenario (hypothesis H0), with
prior probability 
0, independently of all other mea-
surements. The determination of 
0 and 
1 is based on
the probability of detection within a resolution cell ap-
proximately given as


0 ≈ NcellsPFA

NcellsPFA + PD
, 
1 = 1 − 
0. (34)

The LLF can now be written as

λ(x;Z) =
Nw∑
i=1

Nm∑
m=1

ln
{

0p
(
z∗
m(i)
∣∣x,H0
)

+
1p
(
z∗
m(i)
∣∣x,H1
)}

. (35)

Disturbance (clutter plus noise) is assumed to be uni-
formly distributed within the observation volume of size
V , i.e.,

p
(
z∗
m(i)
∣∣x,H0
) = 1

V
. (36)

Object-originated kinematic measurements are Gaus-
sian with covariance matrix R and the mean of these
measurements is the application of the path-dependent
measurement function h�(·) to the putative state vector
mapped to time i, f (i, x). This allows us to write the con-
ditional pdf of a object based measurement for a specific
path � as

p
(
z∗
m(i)
∣∣x,H1, �

) = N [z∗
m(i);h� [ f (i, x)] ,R] , (37)

whereN [z;μ,R] is the Gaussian distribution with vari-
able z, mean μ, and covariance matrix R. Summing over
all path likelihoods and multiplying by the path priors
gives us the desired part of the likelihood as

p
(
z∗
m(i)
∣∣x,H1
) = N�∑

�=1

p
(
z∗
m(i)
∣∣x,H1, �

)
p(�) (38)

where p(�) is the prior probability of path � ∈
{1, 2, . . . ,N�}, which we take to be uniform.We also add
the amplitude pdfs, which are conditional after thresh-
olding, p0 (Am(k)) and p1 (Am(k)). This is done by as-
suming the amplitudes to be random and independent
of the rest of the measurements, then simply multiply-
ing, i.e.,

λ(x;Z) =
Nw∑
k=1

Nm∑
m=1

ln
{

0pτ

0 (Am(k)) p
(
z∗
m(i)
∣∣x,H0
)

+
1pτ
1 (Am(k)) p

(
z∗
m(i)
∣∣x,H1
) }

. (39)

With the likelihoods defined above, the OE
algorithm provides an estimate according to the
maximization

x̂ = argmax
x

λ(x;Z). (40)

It must be stressed that the OE is based on the prob-
abilistic multiple hypothesis tracker (PMHT), and that
the PMHT makes the very strong assumption that the
provenance (association) of each measurement is inde-
pendent of that of all others. In the case of standard
“hit-based” tracking, this means that zero, or one, or
two—or, indeed, all—measurements can associate to the
object. In the case of our measurement model, this is
extended to allow for multiple measurements to have
provenance of (say) upper-path outbound and lower-
path return to have non-zero a-priori probability. This
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Fig. 2. A notional example of modifying a function that is essentially
flat between peaks (in blue) to one with a slight slope introduced by a
large, central Gaussian (in orange).We see that the position of the
global maximum is unchanged, but any method where candidate

points are on the flat surface part (now nearly flat) of the domain will
not stall.

formulation leads to computational amenability that the
OE exhibits; a multi-scan likelihood evaluation that ex-
cludes physically-duplicative events has been shown to
be quickly prohibitive due to the combinatorial com-
plexity involved in also considering multiple paths. For-
tunately, we find that the “impossible” events are gener-
ally afforded small likelihoods,meaning that much prac-
ticality is gained with the multipath OE approach.

A. Optimization

The above maximization of the LLF (39) is chal-
lenging due, in part, to the fact that the LLF is multi-
modal. Another challenge exists when calculating the
value of the LLF (which is done for many trajectory
options) is computationally demanding for even mod-
est sized batches.Our solution requires several different
optimization methods in tandem to produce consistent,
accurate results.

When performing the global optimization “hill-
finding” procedure (and only then), we alter the like-
lihood surface slightly. Specifically, we alter the flat re-
gions of the LLF to add a relatively small slope such that
the optimization stopping criteria will not be easily met.
This is shown notionally in Fig. 2.We obtained this slight
slope by changing the clutter density from uniform to
a truncated Gaussian, whose standard deviation in each
dimension is much larger than the volume of the obser-
vation area (by an order of magnitude). The truncated
Gaussian also has a mean that is placed in the middle of
the observation space.The placement of the mean of the
truncated Gaussian was found to be of no consequence
for the estimate (40) (assuming the variance was suffi-
ciently large and the average value was kept the same).
The output of this global optimizer is then given to a

TABLE I
Simulation parameters for scenario 1 and scenario 2. All location

parameters are in ECEF.

Parameter Value

R diag([75m 5m/s 1◦])
γ (SNR) 10
τ (Threshold) 3.1
Sensor Pos. (ECEF) [1450; − 2727.2; 5572.2] km
Monte Carlo runs 200
AX 0.48 m2

mt 2000 kg
Cd0 0.03
ρ0 1.2250
r0 8.5 × 103 m
Ci 6 × 10−5

PD (in a cell) 0.65
PFA (in a cell) 0.0082

0, 
1 0.792, 0.208
Ncells 1200

gradient ascent method that operates on the original LF
to produce the final estimate and likelihood of this esti-
mate. This process is done a maximum of three times, or
until the likelihood of the estimate passes a threshold.

The global optimization routine that we used is from
the NLopt package [11], and is an implementation of
a “controlled random search” with a “local mutation”
modification [14]. We also provide our global optimiza-
tion method with an initial parameter vector around
which it will search. This is done by approximately in-
verting the measurement function and can be found in
the Appendix.

V. SIMULATIONS RESULTS

In this section, we present some interesting scenar-
ios for objects, as well as accuracy statistics pertain-
ing to the performance of our multipath OE. We be-
lieve it pertinent to mention that the Cramer–Rao lower
bound (CRLB) for a OE can be potentially misleading.
The assumption that everymeasurement can possibly be
object-generated is not correct and can produce lower
bounds that are not comparable to the state of nature.
Specifically, recall the earlier discussion about the OE
(and PMHT) association assumptions: in the simulation,
we do not generate the data according to those assump-
tions, rather we use the true model that excludes unreal-
istic associations. Therefore, we will not further discuss
the CRLB.

The first simulation tests an object that begins mov-
ing perpendicular to the line connecting the object to
the sensor. The velocity is also tangent to the Earth with
a magnitude of 4 km/s. The object will then perform a
20 m/s2 pull up and left turn in its own reference frame.
The object is observed for 15 s at a sample rate of 1 Hz.
The sensor operating frequency is 15 MHz. The rest of
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TABLE II
Initial motion parameter vector values and RMSE for scenario 1 at
the beginning and end of the OE estimated track. All motion and

location parameters are in ECEF. The turn rates are given in respect
to the object’s reference frame (i.e. the z turn rate is zero and not

given).

Parameter Value Init. RMSE Final RMSE

x 1450 km 1275 m 1345 m
y −2727.2 km 678 m 688 m
z 5572.2 km 139 m 148 m
Vx 3532 m/s 30.83 m/s 36.51 m/s
Vy 1878 m/s 20.9 m/s 18.30 m/s
Vz 0 m/s 6.2 m/s 5.97 m/s
�T
x 23.2 mrad/s 0.63 mrad/s

�T
y −65.8 mrad/s 0.73 mrad/s

the parameters for this scenario can be found in Table I
and motion parameters are found in Table II.

Fig. 3 shows measurements from a single Monte
Carlo run after thresholding. The scenario was run
through the OE algorithm described above to estimate
the initial object motion parameters and we examine
the root mean square error (RMSE) of this estimate as
well as the final position and velocity estimates.The esti-
mated final value is found by propagating the estimated
initial value through the deterministic motion equation
(12). These errors can be found in Table II and a sam-
ple trajectory, both truth and estimated, can be found in
Fig 4.

The results for this scenario show that the object po-
sition can be estimatedwith about∼ 1.45 kmaccuracy of
the original position and the velocity estimates are accu-
rate within about 38 m/s. The estimate of the turn rates
are accurate to ∼ 1 mrad/s on average. The final posi-
tion RMSE are similar to the initial value RMSE. We
will not report the final value of the turn rate as it is con-
stant over a single batch. We also found that the opti-
mizer converged to the correct solution over 94% of the
Monte Carlo runs.

A second scenario with different object parameters
yielded similar results. The other simulation parameters
were kept the same as scenario 1.The values of these pa-
rameters and the RMSE associated with them can found
in Table III. Fig. 5 shows the estimated trajectory for sce-
nario 2 compared to the truth and the Earth’s Surface

Finally, we address the assumption that the drag pa-
rameters (other than the speed of the object) are known
by exploration method by which we would determine
the drag coefficient via maximum likelihood methods.
Firstly, Table IV shows the LLF value, evaluated at the
true object motion parameters, as a function of the drag
coefficient for scenario 2. We see that we can maximize
over the value of the drag coefficient, perhaps by test-
ing a discrete number of candidate drag values, and use
this value as the true drag coefficient. We can also see
from Table IV that a using the incorrect drag causes an
increase in error (better to underestimate). In the sce-

Fig. 3. Sample measurements plotted for scenario 1. The blue
markers indicated object originated measurements and red markers

indicate disturbance originated (after thresholding).While the
originates are shown for illustration only, the OE does not know
them. Note that for each object-originated measurement there are
about 10 disturbance-originated ones. The OE also does not know
the paths corresponding to the object-originated measurements.
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Fig. 4. Sample trajectory for scenario 1 with the true trajectory in
blue and the estimated trajectory in red. The yellow plane indicates

the Earth surface.

TABLE III
Initial motion parameter vector values and RMSE for scenario 2 at
the beginning and end of the OE estimated track. All motion and

location parameters are in ECEF. The turn rates are given in respect
to the object’s reference frame (i.e. the z turn rate is zero and not

given).

Parameter Value Init. RMSE Final RMSE

x 571 km 1163 m 1194 m
y 1074 km 616 m 610 m
z 6255 km 142 m 144 m
Vx 3082 m/s 84.5 m/s 97.3 m/s
Vy 2545 m/s 49.3 m/s 40.7 m/s
Vz 155 m/s 5.9 m/s 6.4 m/s
�T
x −49.4 mrad/s 0.99 mrad/s

�T
y −49.4mrad/s 1.2 mrad/s

nario investigated here (scenario 2), the goal for error in
drag estimation should be ≤ 10%.

VI. CONCLUSIONS

This work developed a method to track an acceler-
ating object in a multipath environment. We first de-
fined a motion model for objects under the influence of

TABLE IV
A sampling of initial object motion parameter errors when non-exact

drag coefficient values are used.We also present the associated
log-likelihood values (evaluated at the true object motion

parameters) for the mis-matched drag coefficients.We see that larger
LLR values correspond to the drag coefficients with less error and a
larger error in drag used causes a larger mean squared error in initial

object parameter estimation.

% Drag LLF Val. |r0| Err |S0| Err |�O| Err
70% 448 1963 m 155 m/s 10.0 mrad/s
90% 788 1615 m 66 m/s 3.08 mrad/s
100% 1337 1451 m 38 m/s 0.96 mrad/s
110% 832 1965 m 99 m/s 6.16 mrad/s
130% 510 2537 m 154 m/s 8.32 mrad/s

Fig. 5. Sample trajectory for scenario 2 with the true trajectory in
blue and the estimated trajectory in red. The yellow plane indicates

the Earth surface.

radial gravity and drag that varies with centripetal ac-
celeration. These objects also exhibit rapidly changing
motion parameters that preclude the approximation by
straight lines even over short batch lengths.We also pre-
sented a method by which a conversion between refer-
ence frames limits the number of parameters that need
to be estimated. We then described the measurement
model and thresholding method used to limit the num-
ber of measurements delivered to the tracker. The al-
gorithm used is a generalized OE that allows for multi-
path measurements to be considered and uses a series of
optimization algorithms to produce an estimate for the
initial object motion parameters during a batch length.
Monte Carlo simulations were performed and show the
accuracies of position, velocity, and turn rate estimates
for the complex scenario we considered.

APPENDIX

A. Optimizer Initialization by Approximate Inverse Measurement Function

We developed a method to approximately invert
range and azimuth measurements to Earth centered,
Earth fixed (ECEF) Cartesian coordinates.The first step
in this inversion is to approximate the measurement
function, rt (θr, θt ),which calculates the range along a sin-
gle path from the sensor position (θr) to the object’s po-
sition (θt). The approximation used is

rt (θr, θt ) ≈ C0 +C1D+C2a, (41)

where D is the great circle distance (GCD) from the
sensor to the target, a is the target altitude, and Cn are
constants that minimize the error (via a least squares
method) in this approximation. There is a different set
of coefficients for each possible signal path from the sen-
sor to the object. We have found this approximation to
have negligible error over the observation area. The tar-
get altitude is unknown, yet necessary for this inversion.
In practice, we will test a set of probable altitudes at a
fine enough granularity to ensure minimal error.We will

FUSION OF MULTIPATH DATA FROM A REMOTE SENSOR FOR OBJECT EXTRACTION 121



continue this description assuming the altitude being
used is the target’s true altitude at the measurement
time.

The solution involves rotating the global ECEF ref-
erence frame such that the sensor lies on the new z-axis
(while on the Earth’s surface). Solving this equivalent
problem is mathematically less complex and the result
can be converted back to the standard ECEF reference
frame via a rotation matrix. The sensor’s position in this
new reference frame (θ ′

r) is

θ ′
r = [0 0 RE

]T
, (42)

where RE is the radius of the earth (6371 km). An esti-
mate for the GCD can be found as

D̂ = rt (θr, θt ) −C0 −C2a
C1

. (43)

We note that the noise in the range measurement will
affect the accuracy of this estimate. The GCD between
the sensor and object is invariant under the change in
reference frame, and is calculated as

D = RE cos−1
(

θTr θs

R2
E

)

= RE cos−1
(
(θ ′
r)
Tθ ′

s

R2
E

)
= RE cos−1

(
z′
s

RE

)
, (44)

where θs and θ ′
s are the position on the Earth’s surface

directly below the target in the original and rotated ref-
erence frames, respectively. z′

s is the z-coordinate of θ ′
s.

This shows that the z-coordinate is constant in our solu-
tion, i.e., the inverted measurement lies on the plane

z′
s = RE cos

(
D̂
RE

)
, (45)

using the approximate GCD from (43).
The rotation into the new reference frame we use is

such that the new x-axis points to the local south in the
original ECEF reference frame. Therefore, the azimuth
measurement (α) is translated as the clockwise positive
angle from the rotated reference frame’s negative x-axis
(see Fig. 6). Any measurement at this azimuth will lie
inside a plane in the rotated reference described as

sin(α)x′
s + cos(α)y′

s = 0, (46)

where x′
s and y

′
s are the x-coordinate and y-coordinate of

θ ′
s.

Using (45) and (46), along with the fact that

(x′
s)

2 + (y′
s)

2 + (z′
s)

2 = R2
E, (47)

allows us to solve explicitly for θ ′
s as

θ ′
s = RE

[
− sin
(
D̂
RE

)
cos(α) sin

(
D̂
RE

)
sin(α) cos

(
D̂
RE

)
.
]′

(48)
This solution is then rotated back into the ECEF ref-

erence frame (θs) using the sensor spherical position (i.e.,

Fig. 6. Representation of the tangent plane to Earth’s surface at the
sensor in the rotated reference frame.Due North is represented as the
negative x̂′ direction. The azimuthal angle is given east of due north
and is shown in red. The calculation of (49) follows from the diagram.

[RE, φr, ψr]) in a rotation matrix as

θs =

⎡
⎢⎢⎣
cos(ψr) cos(φr) − sin(φr) sin(ψr) cos(φr)

cos(ψr) sin(φr) cos(φr) sin(ψr) sin(φr)

− sin(ψr) 0 cos(ψr)

⎤
⎥⎥⎦ θ ′

s.

(49)
Finally, the assumed altitude is added onto the surface
position to find an approximate inversion for the pro-
posed object position measurement, θt .

The estimated locations in (49) use measurements
that are corrupted by noise. Specifically, the azimuthal
noise causes a multiplicative bias that should and can be
corrected for. This is done by multiplying the inverse of
the expected value of the bias, as in [2], namely,

θ ′
s = RE

⎡
⎢⎢⎢⎢⎢⎣

− sin
(
D̂
RE

)
cos(α) exp

(
σ 2

α

2

)
sin
(
D̂
RE

)
sin(α) exp

(
σ 2

α

2

)
cos
(
D̂
RE

)

⎤
⎥⎥⎥⎥⎥⎦ , (50)

where σ 2
α is the azimuthal noise variance (assumed

Gaussian). The correction for the range noise is similar,
but is not needed for reasonable accuracy.
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