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In target tracking applications, it is necessary to account for mea-

surement biases present within the sensors. For passive sensors, these

biases are commonly represented as unknown rotations of the sensor

measurements and must be estimated. As targets may move in un-

predictable ways, it is advantageous to decouple target state and sen-

sor bias estimation to simplify the estimation problem. To do this, a

bias pseudo-measurement method must be used in which the mea-

surements are converted and differenced to eliminate the presence

of the true target state. For passive angle-only sensors, it is impor-

tant to appropriately convert lines of sight into Cartesian space. By

using the closest point of approach method, it is possible to apply the

bias pseudo-measurement method to these sensors. The Cramér–Rao

lower bound can be obtained for this method, and, furthermore, it can

be attained by using a maximum likelihood estimation method.

I. INTRODUCTION

In target tracking, it is common that the sensors em-
ployed are subject to systematic errors known as sensor
measurement biases. Errors present in sensors, such as
calibration, alignment, or clock time [3], [12], can con-
tribute to such biases. These errors can also be related to
environmental effects such as temperature-due warping
of the sensor material and atmospheric refraction. Fur-
thermore,many of the advanced methods developed for
target tracking do not take into account these sources
of error, which can result in diminished performance.
Therefore, it is necessary to use methods to estimate
these biases and then remove the corresponding error
from the sensor measurements before implementing tar-
get tracking solutions.

In the past, there have been primarily two methods
of bias estimation that have been implemented.The first
is simultaneous target state and sensor bias estimation
[4], [6], [7]. In this method, the state of the target is
estimated jointly and simultaneously with the sensor
biases. A significant problem with this method is that
the target as a practical matter needs to be assumed to
be moving in a deterministic manner. If not, the target
state at all times must be estimated, which is compu-
tationally infeasible and prone to numerical problems
in ill-conditioned systems [20]. An additional issue is
the increase in the dimension of the parameter vector
that must be estimated: not just bias parameters but
also those of the targets. This is both a computational
concern (increased complexity) and one of perfor-
mance, since more parameters always mean more error.
On the other hand, the advantage with this method
is that should the state information be known, then it
is possible to achieve efficient results using all of the
measurement information.Additionally, there are fewer
issues with measurement synchronization [21].

The second method for bias estimation is to use bias
pseudo-measurements [9], [16], [20]–[22], [26]. In this
method, the original measurements are converted into
Cartesian within common coordinates [such as Earth-
centered Earth-fixed (ECEF)] and then differenced to
eliminate the true target state. This process leaves solely
the effect of the biases and noise, which are used as the
measurements for bias estimation. This can be advanta-
geous because it enables the system to decouple the pro-
cess of state estimation and bias estimation.The problem
with this method is that the removal of the target state
information can potentially reduce the effectiveness of
bias estimation, as some measurement information can
be lost. Additionally, conversions can be nonlinear and
result in additional error as the noise is converted.

The sensor biases can bemodeled inmany forms that
depend on the sources of error that affect the types of
sensors in question. For example, there are results in-
vestigating bias estimation to additive andmultiplicative
biases [16], [22], [26]. These biases affect the measure-
ments directly by adding an unknown value or multiply-
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ing them by an unknown value. In the present work, the
biases of angle-only (passive) sensors are explored. As
these sensors are line-of-sight (LOS) sensors, the biases
present are chosen to be modeled as a rotation of the
LOS around the sensor. The sensors provide two angle
measurements and have 3-D alignment error. The rota-
tion is a nonlinear Euler rotation using yaw (azimuth),
pitch (elevation), and roll (rotation of the field of view),
which is a challenge to estimate. Rotational bias estima-
tion has been examined using simultaneous target state
and bias estimation in the past, but little has been done
for the pseudo-measurement method [9], [19], [26]. In
particular, these methods achieve this by using a con-
version via LOS triangulation; however, this method has
drawbacks as a result of its nonlinear conversion that re-
lies on projecting the LOSs into a single plane [17]. The
present work seeks to improve upon the method of [19]
by using the closest point of approach (CPA) method of
conversion [18], which avoids observability problems by
working in 3-D instead of 2-D.

The CPA conversion used here is based on the
method of finding the closest point between non-
intersecting lines [1], [15]. This is made via a least-
squares framework, where the squared distance of a
point between two lines is minimized. A cost function is
made and differentiated in order to find this point,where
the derivative is zero. In three dimensions, this results in
simple expression that can be itself differentiated to ob-
tain the Jacobians that are necessary for the bias pseudo-
measurementmethod.Thismethod of conversion differs
from maximum likelihood (ML) conversion from LOS
to Cartesian as there is no iteration involved, such as in
[24], and instead an explicit expression is used.

In previous research, simultaneous target state and
bias estimation has often been used to overcome the
challenge of a nonlinear bias [4], [6], [7]. However, this
method relies upon having a target of opportunity that
moves deterministically, and in many applications, it is
impossible to predict a target’s motion as it may move in
nonlinear and maneuvering ways that do not fit the ex-
pected target motion. Therefore, it is desirable to decou-
ple the target state and the estimation of sensor bias.This
bias pseudo-measurement method has been applied to
additive and multiplicative biases in active sensors suc-
cessfully in previous research [16], [22], [26]. Most work
in angle-only LOS sensor bias estimation has been done
solely in 2-D bearings-only problems.Thesemethods are
limited to 2-D Cartesian space with angle-only sensors
and bias only in the one angle.Methods for bistatic mea-
surements have been introduced in [27] and [28]. In [25],
the pseudo-measurement method is applied with time-
of-arrival measurements to improve the accuracy. In [8],
a particle filter is shown to be usable for bias estimation
for bearings-only sensors. In [26], it was shown that it is
possible to find the Cramér–Rao lower bound (CRLB)
but that achieving it is difficult.There has been very little
work to apply pseudo-measurement techniques to 3-D
passive sensors [9]. The main contribution of the present

work over [9] and [26] is to show attainability of the
CRLB; i.e., our algorithm is statistically efficient. In ad-
dition, [9] is limited to biases in azimuth and elevation,
lacking a roll bias.

Once the pseudo-measurements are generated, it is
possible to use them to estimate the sensor biases sepa-
rately from the target state.To estimate the biases in sen-
sors, it is simple and effective to use theMLapproach im-
plemented via the iterated least-squares (ILS) method
if the biases are constant over a batch of measurements.
ILS estimation has been used in 3-D passive sensor [5]
and 3-D spherical sensor bias registration. In this paper,
ILS is used to estimate the rotational biases in 3-D pas-
sive sensors.

The outline of this paper is as follows. The passive
sensor model is defined in Section II. In Section III, the
passive sensor angle-only measurements are converted
into Cartesian coordinates. In Section IV, the pseudo-
measurement approach for estimating the biases is out-
lined in Section IV-A and the ML estimation described
in Section IV-B. The CRLB is presented in Section V.
Simulation results presented in Section VI show that the
proposed method yields sensor bias estimates that meet
the CRLB. Section VII concludes the paper.

II. PROBLEM FORMULATION

The problem formulation for this work involves tar-
get tracking using passive angle-only sensors in 3-D
Cartesian space. There areNt targets of opportunity and
Ns sensors that move over K time steps. The common
Cartesian reference frame is in ECEF coordinates. The
position of each sensor s, which is assumed to be known
by the network, is defined as

xs(k) = [xs(k), ys(k), zs(k)]T. (1)

These sensors are assumed synchronous. Each target t
has a position in the common Cartesian frame unknown
to the network, given by

xt (k) = [xt (k), yt (k), zt (k)]T. (2)

The targets can move in arbitrary ways, but their posi-
tions related to the measurement origin must be known
for all times.Each sensor has an LOS to the targets based
in its own reference frame. The position of the target t
with respect to the sensor s in the common Cartesian
frame translates to the sensor location as

xts(k) = xt (k) − xs(k). (3)

The sensor reference frame is rotated (with respect to
the common Cartesian frame) using the Euler angle ro-
tation method. The sensors are affected by the known
nominal rotation ωn

s and the unknown bias rotation ωb
s .

The target position in the rotated sensor frame is then

xt,n,bs (k) = Ts(ωn
s )Ts(ω

b
s ) (x

t (k) − xs(k)) . (4)

The biases consist of yaw, pitch, and roll, defined as θ ,
φ, and ψ , respectively. For clarity, the superscripts n and
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b are used to denote rotation variables for the nominal
rotation and bias rotation, respectively. A variable with
both superscripts is rotated by both. The rotations for
sensor s are defined as

ωn
s = [

θns φn
s ψn

s

]T
, (5)

ωb
s = [

θbs φb
s ψb

s

]T
, (6)

T (ωi
s) = T (θ is, φ

i
s, ψ

i
s) = Tθ (θ is)Tφ(φi

s)Tψ (ψ i
s) =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos(θ ) cos(φ)
cos(θ ) sin(φ) sin(ψ )

− sin(θ ) cos(ψ )
cos(θ ) sin(φ) cos(ψ )

+ sin(θ ) sin(ψ )

sin(θ ) cos(φ)
sin(θ ) sin(φ) sin(ψ )

+ cos(θ ) cos(ψ )
sin(θ ) sin(φ) cos(ψ )

− cos(θ ) sin(ψ )

− sin(φ) cos(φ) sin(ψ ) cos(φ) cos(ψ )

⎤
⎥⎥⎥⎥⎥⎥⎦

,

i = n,b. (7)

The rotated positions (4) that are used by the sensors
produce the rotated azimuth and elevation measure-
ments (represented by ξ for the vector of azimuth α and
elevation ε, respectively)

ξ t,n,bs (k) =
[

αt,n,bs (k)

εt,n,bs (k)

]

=

⎡
⎢⎢⎣

tan−1
(
yt,n,bs (k)
xt,n,bs (k)

)

tan−1

(
zt,n,bs (k)√

xt,n,bs (k)2 + yt,n,bs (k)2

)
⎤
⎥⎥⎦ . (8)

Uncorrelated (across sensors), independent (across
time), zero-mean, white Gaussian noise is added to
obtain the measurements, denoted by wt,n,b,α

s (k) and
wt,n,b,ε
s (k) for azimuth and elevation, respectively. These

noises have variances (σα
s )

2 and (σ ε
s )

2. An expansion is
used to approximate the effect of the nominal rotation
in equation (5) and biases in equation (6) through the
use of Jacobians (seeAppendixA).This results in biased
and noisy measurements, denoted by ζ , with the mea-
surement equation

ζ t,n,bs (k) =
[

αt,n,bs (k)
εt,n,bs (k)

]
+

[
wt,α
s (k)

wt,ε
s (k)

]

≈
[

αt,bs (k)

εt,bs (k)

]
+

[
wt,α
s (k)

wt,ε
s (k)

]

+

⎡
⎢⎢⎢⎣

∂αt,n,bs (k)
∂θns

∂αt,n,bs (k)
∂φn

s

∂αt,n,bs (k)
∂ψn

s

∂εt,n,bs (k)
∂θns

∂εt,n,bs (k)
∂φn

s

∂εt,n,bs (k)
∂ψn

s

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

θns

φn
s

ψn
s

⎤
⎥⎥⎦

≈
[

αts(k)

εts(k)

]
+

[
wt,α
s (k)

wt,ε
s (k)

]

+

⎡
⎢⎢⎢⎣

∂αt,bs (k)
∂θbs

∂αt,bs (k)
∂φb

s

∂αt,bs (k)
∂ψb

s

∂εt,bs (k)
∂θbs

∂εt,bs (k)
∂φb

s

∂εt,bs (k)
∂ψb

s

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

θbs

φb
s

ψb
s

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎣

∂αt,n,bs (k)
∂θns

∂αt,n,bs (k)
∂φn

s

∂αt,n,bs (k)
∂ψn

s

∂εt,n,bs (k)
∂θns

∂εt,n,bs (k)
∂φn

s

∂εt,n,bs (k)
∂ψn

s

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

θns

φn
s

ψn
s

⎤
⎥⎥⎦

� ξ ts (k) +Ct,b
s (k)ωb

s +Ct,n,b
s (k)ωn

s + wt
s(k), (9)

with the measurement noises for the sensor LOS angles
being

wt,α
s (k) ∼ N (0, (σα

s )
2), wt,ε

s (k) ∼ N (0, (σ ε
s )

2). (10)

The matrix Ct,n,b
s is the Jacobian of the sensor LOS an-

gles (at the nominal and bias rotation)with respect to the
nominal rotation. The matrix Ct,b

s is the Jacobian of the
sensor LOS angles (at the nominal rotation) with respect
to the bias rotation. The corresponding partial deriva-
tives are given in Appendix A. These measurements are
assumed to be synchronous, although an asynchronous
extension is possible [21]. It is important to note that this
Taylor series expansion is an approximation, and in cer-
tain cases, the nonlinearity may cause additional error.
It is possible to add higher order elements into the ex-
pansion, as this is only a first-order expansion, in order
to reduce this error.

III. CONVERSION INTO THE COMMON CARTESIAN
COORDINATES

In order to produce bias pseudo-measurements, it is
necessary to first convert the angle-only measurements
into the common frame of reference.This is done by con-
verting them into the common Cartesian coordinates.
This can be done using the triangulationmethod [17] and
CPA [18]. In [19], the pseudo-measurement method was
originally proposed for passive sensors, albeit with the
planar triangulation method. The method was success-
ful; however, it required a relatively low noise standard
deviation. For this work, the CPA method is considered
as it is more accurate for converting to Cartesian [18],
even achieving theCRLBof coordinate conversion.This
is much simpler than the ML method used for conver-
sion as in [24], which requires a numerical search and
does not yield the necessary Jacobians.

Before the conversion to the common Cartesian co-
ordinates can be made, it is necessary to remove the
nominal rotation so that the LOSs are in the same com-
monCartesian coordinate reference frame.This rotation
is known and can be removed by inverting it using the
function hi, defined in equation (13). This calculation is
included in Appendix A. It is also necessary to account
for this in the noise covariance through the Jacobian D
that transforms the sensor LOS angle noises into the

STATISTICALLY EFFICIENT MULTISENSOR ROTATIONAL BIAS ESTIMATION FOR PASSIVE SENSORS 75



Fig. 1. Using CPA to convert azimuth measurements into 3-D
Cartesian measurements. The sensors have their own rotated

Cartesian frames with respect to the common Cartesian frame (ECI
or ECEF) shown in the center. The LOS measurements are present
as rays L1 and L2. The two closest positions on the LOSs are found,
xt,c1,2′ (k) and x

t,c
1,2′′ (k), with respect to the common frame and the

midpoint xt,c1,2(k) is accepted as the measurement of the target
position.

rotated LOS noises (this rotation converts the sensor
LOS angles into the common Cartesian system angles).
This Jacobian is

Dt,n,b
s (k) =

⎡
⎢⎢⎢⎢⎣

∂αt,bs (k)

∂αt,n,bs (k)

∂αt,bs (k)

∂εt,n,bs (k)

∂εt,bs (k)

∂αt,n,bs (k)

∂εt,bs (k)

∂εt,n,bs (k)

⎤
⎥⎥⎥⎥⎦ . (11)

The converted noise in the common Cartesian system
angles is

wt,b
s (k) = Dt,n,b

s (k)wt
s(k). (12)

The angle measurement equation in the common Carte-
sian frame is

ζ t,bs (k) = hi
(
ζ t,n,bs (k),ωn

s

)
(13)

≈ ξ t,bs (k) + wt,b
s (k) (14)

≈ ξ ts (k) +Ct,b
s (k)ωb

s +Dt,n,b
s (k)wt

s(k). (15)

The expanded definition of equation (13) and the in-
dividual partial derivatives are given in Appendix A,
where the approximation is the Taylor series to first or-
der.1 The CPAmethod uses two LOSs and finds for each

1This conversion is an approximation as the presence of the unknown
bias may add some error from the nonlinear conversion from the sen-
sor frame to the common frame.The approximation’s error is based on
the presence of higher order components,which are negligible relative
to the biases themselves.

LOS the closest Cartesian positions along the other LOS.
The midpoint of these two points is the CPA and can be
accepted as a measurement of the Cartesian position of
the target. This process is illustrated in Fig. 1. Normally,
the midpoint of these positions is used as a single Carte-
sian measurement; however it is useful for bias estima-
tion to keep these positions separate in order to improve
the diversity of the pseudo-measurements. The super-
script c is used to indicate conversion via closest point
of approach, which is calculated as

xt,c12′ (k) =

⎡
⎢⎢⎣
xt,c12′ (k)

yt,c12′ (k)

zt,c12′ (k)

⎤
⎥⎥⎦ = x1(k) (16)

+λt1(k)
(λt1(k)

′p1,2(k)) − (λt1(k)
′λt2(k))(λ

t
2(k)

′p1,2(k))
1 − (λt1(k)′λ

t
2(k))2

,

xt,c12′′ (k) =

⎡
⎢⎢⎣
xt,c12′′ (k)

yt,c12′′ (k)

zt,c12′′ (k)

⎤
⎥⎥⎦ = x2(k) (17)

+λt2(k)
(λt1(k)

′λt2(k))(λ
t
1(k)

′p1,2(k)) − (λt2(k)
′p1,2(k))

1 − (λt1(k)′λ
t
2(k))2

,

λt1(k) =

⎡
⎢⎢⎣
cos(αt1(k)) cos(ε

t
1(k))

sin(αt1(k)) cos(ε
t
1(k))

sin(εt1(k))

⎤
⎥⎥⎦ , (18)

λt2(k) =

⎡
⎢⎢⎣
cos(αt2(k)) cos(ε

t
2(k))

sin(αt2(k)) cos(ε
t
2(k))

sin(εt2(k))

⎤
⎥⎥⎦ , (19)

p1,2(k) = x2(k) − x1(k) =

⎡
⎢⎣
x2(k) − x1(k)

y2(k) − y1(k)

z2(k) − z1(k)

⎤
⎥⎦ . (20)

In place of the true azimuth and elevation, the conver-
sion hc is made using the noisy measurements.

[
xt,c12′ (k)

xt,c12′′ (k)

]
= hc

(
ξ t1,2(k)

)
, (21)

ζ t,b,c1,2 (k) = hc
(
ζ t,b1,2(k)

)
. (22)
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The new noisy Cartesian measurement equation can be
rewritten similarly to equation (9) as

ζ t,b,c1,2 (k) ≈
[
xt (k)

xt (k)

]
+

[
wt,c

12′ (k)

wt,c
12′′ (k)

]

+Bt
1,2(k)

[
Ct,b
1 (k) 0

0 Ct,b
2 (k)

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θb1

φb
1

ψb
1

θb2

φb
2

ψb
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈ xt,E(k) + Bt
1,2(k)C

t,b
1,2(k)ω

b
1,2 + wt,b,c

1,2 (k). (23)

As it is a Taylor series expansion, this equation is an ap-
proximation. Depending on the case, higher order ex-
pansion via additional Jacobian terms may be necessary
to avoid error.ThematrixBt

1,2 is the Jacobian of the com-
mon Cartesian measurements with respect to the LOS
angles in the common Cartesian space, which is

Bt
1,2(k) =

[ ∇ξ t1,ξ
t
2
xt,c12′ (k)

∇ξ t1,ξ
t
2
xt,c12′′ (k)

]
. (24)

The Jacobian additionally affects the noise, which is

wt,b,c
1,2 (k) =

[
wt,c

12′ (k)

wt,c
12′′ (k)

]

≈ Bt
1,2(k)

[
wt,b

1 (k)

wt,b
2 (k)

]

∼ N
(
010×1,R

t,b,c
1,2 (k)

)
, (25)

Rt,b,c
1,2 (k) = Bt

1,2(k)D
t,n,b
1,2 (k)Rt,b,n

1,2 Dt,n,b
1,2 (k)′Bt

1,2(k)
′,

(26)

Rt,b,n
1,2 =

⎡
⎢⎢⎢⎢⎢⎣

(σα
1 )

2 0 0 0

0 (σ ε
1 )

2 0 0

0 0 (σα
2 )

2 0

0 0 0 (σ ε
2 )

2

⎤
⎥⎥⎥⎥⎥⎦ ,

where

Dt,n,b
1,2 (k) =

[
Dt,n,b

1 (k) 0

0 Dt,n,b
2 (k)

]
. (27)

It is not necessary to calculate the Cartesian target states
in order to generate the Jacobian matricesB,C, andD—
they are evaluated at the measured angles. The individ-
ual derivatives and gradients are given inAppendixA.A
higher order conversion may be used similarly to [23] in
order to avoid conversion error in the noise covariance
matrix as the noise is an approximation via a Taylor se-
ries expansion.

IV. BIAS ESTIMATION

A. Generation of the Bias Pseudo-Measurements

The key step of our method is to difference
Cartesian measurements from two pairs of sensors in or-
der eliminate the true target state and be left with solely
the effect of the biases and noise converted into Carte-
sian space. As the true Cartesian state is unknown, it is
advantageous to remove it from our measurements. This
way any error in the estimation of the Cartesian state
does not affect the estimation of the biases. The pro-
cess of converting all of the sensor measurements into
a common Cartesian frame allows its removal by sim-
ply differencing the measurements. This isolates the er-
ror from biases and noise. With the isolated error, it is
possible to estimate the biases by attempting to fit the er-
rors to what is expected in terms of the models used for
noise and bias.Denoted by superscript p, these “pseudo-
measurements” are calculated as

ζ
t,p
1,2,3,4(k) = ζ t,b,c1,2 (k) − ζ t,b,c3,4 (k)

≈ Bt
1,2(k)C

t,b
1,2(k)ω

b
1,2 − Bt

3,4(k)C
t,b
3,4(k)ω

b
3,4

+wt,b,c
1,2 (k) − wt,b,c

3,4 (k). (28)

This can be restructured into a new measurement equa-
tion similar to equations (10) and (23), where

ζ
t,p
1,2,3,4(k) ≈ Ht,p

1,2,3,4(k)

[
ωb
1,2

ωb
3,4

]
+ w

t,p
1,2,3,4(k), (29)

w
t,p
1,2,3,4(k) ≈ N

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
0

0

0

0

⎤
⎥⎥⎥⎥⎦ ,Rt,p

1,2,3,4(k)

⎞
⎟⎟⎟⎟⎠ , (30)

Ht,p
1,2,3,4(k) =

[
Bt

1,2(k)C
t,b
1,2(k) −Bt

3,4(k)C
t,b
3,4(k)

]
, (31)

Rt,p
1,2,3,4(k) = Rt,b,c

1,2 (k) + Rt,b,c
3,4 (k). (32)

The subscript for parameters (1,2,3,4) denotes that
the parameter includes information from the four sen-
sors. The pseudo-measurements are considered an ap-
proximation as a result of the previous Taylor series
expansions.

B. Maximum Likelihood Estimation of the Biases

It is possible to estimate the biases by using the bias
pseudo-measurements, and there are various methods
for this. In this paper, we seek the ML estimate (MLE)
for the biases, and note that it is desirable to accompany
the MLE with the CRLB, since when the MLE is effi-
cient (wewill check this) its error performance tracks the
CRLB closely. To achieve this, first the measurements
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are stacked into a batch

ζ =
[
ζ
1,p
1,2,3,4(1), . . . , ζ

Nt ,p
1,2,3,4(1), ζ

1,p
1,2,3,4(2), . . . , ζ

Nt ,p
1,2,3,4(K)

]T
.

(33)

The Jacobians and noise covariances are also stacked
into matrices H and R, respectively, as

H j =
[
H1,p

1,2,3,4(1)
j, . . . ,HNt ,p

1,2,3,4(1)
j, . . . ,HNt ,p

1,2,3,4(K) j
]T

,

(34)

R j =

⎡
⎢⎢⎣
R1,p

1,2,3,4(1)
j . . . 0

. . . . . . . . .

0 . . . RNt ,p
1,2,3,4(K) j

⎤
⎥⎥⎦ . (35)

As the Jacobian H is calculated using the biased LOS
measurements, it is necessary to recalculate it using the
debiasedmeasurements as the biases are estimated.This
means an iterative method is required—the ILS imple-
mentation of the MLE is used. In this method, an initial
estimate of zero bias is used and is iteratively updated
until the bias estimate converges. Denoting the current
ILS iteration by the superscript j,

ωb
1,2,3,4 = [

(ωb
1 )

T (ωb
2 )

T (ωb
3 )

T (ωb
4 )

T ]
(36)

ω̂
b,( j+1)
1,2,3,4 = ω̂

b, j
1,2,3,4

+[(H j)′(R j)−1(H j)]−1(H j)′(R j)−1[ζ −H jω̂
b, j
1,2,3,4],

(37)

ω̂
b, j=0
1,2,3,4 = [0, 0, . . . , 0]T . (38)

V. CRAMÉR–RAO LOWER BOUND

In order to understand the performance of this bias
estimation method, it is necessary to derive a metric for
accuracy. The CRLB offers a lower bound on the co-
variance of an unbiased estimator of a fixed parameter,
and hence the root-mean-square error (RMSE) of our
method can be compared to it to test for statistical ef-
ficiency.Additionally, the performances of other estima-
tionmethods can be compared to the presentmethod us-
ing this metric. For example, a simultaneous target state
and bias estimation method can be compared to this
method, which removes the need to estimate the target
state. The CRLB is calculated by taking the inverse of
the Fisher information matrix

J = H ′R−1H, (39)

that is,

CRLB = J−1 = (H ′R−1H )−1. (40)

To find the variances for the individual bias estimates,
it is necessary to examine the diagonal elements of the

CRLB, (σCRLB
i )2. In the case of approximations—such

as those we use here—it may be that an efficient result
is not obtained. Otherwise, the bound is, in theory, at-
tained asymptotically. In the case of this work, theCRLB
covariance is accepted via hypothesis testing at 5% er-
ror. For the estimator to be efficient, the RMSE must be
equal to σCRLB

i . To evaluate the estimator rigorously, its
RMSE σi for each component is compared to the 95%
probability interval of the square root of the CRLB cal-
culated as

P(a < σi < b) = 0.95, (41)

a = σCRLB
i − 1.96 · σi√

nMC
, (42)

b = σCRLB
i + 1.96 · σi√

nMC
, (43)

where σi is the standard deviation of error in component
i from nMC Monte Carlo runs.

The normalized estimator error squared (NEES) [2]
can also be evaluated with the chi-square test to verify
consistency. The NEES for each Monte Carlo Run is

εi = (ωb
1,2,3,4 − ω̂b,i

1,2,3,4)
′Ji(ωb

1,2,3,4 − ω̂b,i
1,2,3,4), (44)

i = 1, 2, . . . ,nMC.

The estimator is considered efficient if the mean of the
NEES (multiplied by the number of Monte Carlo runs)
lies within the 95% probability region for a chi-square
variable with degrees of freedom equal to the number of
bias variables multiplied by the number of Monte Carlo
runs. The probability region (with three angle biases for
each sensor) is defined as

nω = 3Ns, (45)

r1 = χ2
(nMCnω )(0.025), (46)

r2 = χ2
(nMCnω )

(0.975), (47)

ε̄ = 1
nMC

nMC∑
i=1

εi, (48)

ε̄ ∈
[
r1
nMC

,
r2
nMC

]
. (49)

In this case, with 4 sensors and 3 biases in each sensor,
there are 12 parameters and theNEES should be around
12.

VI. SIMULATIONS AND RESULTS

A. Simulation Parameters

In order to evaluate the performance of this method,
it is necessary to create a simulation of appropriate re-
alism. To accomplish this, two scenarios are created, the
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Fig. 2. Long-range sensor and target setup in ECEF coordinates.
K = 350 s.

first being a long-distance orbital scenario and the sec-
ond being a short-range maneuvering scenario. In the
long-range scenario, there are four fixed sensors posi-
tioned near the equator at sea level observing two tar-
gets orbiting the Earth in a deterministic way. This sce-
nario is useful because it is a baseline for performance
in a deterministic motion scenario, which can be then
compared to simultaneous target state and sensor bias
estimation. In the short-range scenario, there are four
ground-based sensors observing several targets that are
moving toward a position on the ground with mid-air
maneuvers. The reason for the short-range scenario is to
show the ability of this method to estimate biases de-
spite the difficulties in tracking a highly maneuvering
target. These scenarios are shown in Figs. 2 and 3. The
sensors have measurement noise standard deviation of
1 mrad and biases of 1 mrad. In the long-range scenario,
the sensors take one measurement per second over
350 s (K = 350) and 100 Monte Carlo runs are used. In
the short-range scenario, the sensors take 10 measure-
ments per second over 40 s (K = 400) and 100 Monte
Carlo runs are used.
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Fig. 3. Short-range sensor and target setup in ECEF coordinates.
K = 400 s.

B. Statistical Efficiency

The CRLB is the lower bound on the variance of this
estimator, meaning that the RMSE must be compara-
ble to the square root of the CRLB. If the RMSE is ac-
cepted as equal (via a statistical hypothesis test) to the
CRLB square root, then the estimator is considered sta-
tistically efficient. The simulations are first made to ver-
ify that this is the case for the estimator. Furthermore,
the results are compared to the method previously re-
sulted in [19] and the hybrid CRLB (HCRLB), an ad-
ditional metric proposed in [13] and [14]. The HCRLB
refers to the CRLB of joint target/bias estimation based
on the original measurements, and hence can be consid-
ered the true lower bound. Since here we digest the orig-
inal measurements into pseudo-measurements, there is
potential loss of information, implying concomitant in-
crease of the CRLB beyond the HCRLB. Additionally,
for the long-range scenario, this method is compared to
a previously developed method [19] that includes only
the Cartesian positions from the conversion via triangu-
lation, to show that using this method results in a lower
CRLB as the conversion has not lost information about
the biases. For the long-range scenario, the results are
seen in Table I.We can see that for this scenario the new
method is efficient and capable of estimating the biases
with an error that is significantly lower than the noise
standard deviation (1 mrad). The RMSE lies within the
probability interval for all biases and the RMSE is less
than 40% of the noise standard deviation for all biases.

Perhaps of even more interest, the method shown in
the present work achieves the HCRLB, while the pre-
vious method [13], [14], [19] fails to do so. This means
that no information about the biases is lost in convert-
ing the coordinates and no information can be added
by using additional transformations and combinations of
pseudo-measurements (such as using both CPA and tri-
angulation2).For the short-range scenario, the results are
seen in Table II, and similar conclusions can be drawn:
the new method achieves efficiency even in the case of
a maneuvering target. The reason why no information is
lost is that the useful data related to the target position
are included in the LOS angle measurements, which are
incorporated into the pseudo-measurements. This is fur-
ther related to the use of ILS,as during each iteration the
LOS angles are updated to prevent error as the bias es-
timates iteratively update. It is not necessary to estimate
the Cartesian position.

C. CRLB Relative to Number of Time Steps

The previous simulation results showed that the new
method is efficient and capable of achieving strong bias
estimates in favorable conditions. However, it is impor-
tant to understand how much data may be necessary to

2This can be loosely compared to counting one’s money forward and
backward (à la dynamic programming) and adding the two.
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Table I
Long-Range Scenario: Verification of the Statistical Efficiency with the CRLB, nMC = 100 Runs; All Quantities are in mrad

CRLB square root Triangulation CRLB [19] HCRLB [13], [14] RMSE 95% probability
Component (present work) square root square root (present work) interval (41)

Sensor 1 0.2203 0.3357 0.2203 0.2371 0.1902
yaw bias 0.2504
Sensor 1 0.3723 0.5033 0.3722 0.3530 0.3332
pitch bias 0.4115
Sensor 1 0.1474 0.3053 0.1474 0.1578 0.1280
roll bias 0.1667
Sensor 2 0.1563 0.2012 0.1563 0.1775 0.1334
yaw bias 0.1792
Sensor 2 0.3345 0.4280 0.3343 0.3309 0.2964
pitch bias 0.3726
Sensor 2 0.0990 0.2729 0.0990 0.1094 0.0864
roll bias 0.1116
Sensor 3 0.2019 0.3197 0.2019 0.2104 0.1753
yaw bias 0.2285
Sensor 3 0.3393 0.4609 0.3393 0.3187 0.3018
pitch bias 0.3769
Sensor 3 0.1522 0.2928 0.1521 0.1600 0.1333
roll bias 0.1710
Sensor 4 0.1046 0.1674 0.1045 0.1019 0.0929
yaw bias 0.1163
Sensor 4 0.3921 0.5214 0.3919 0.3821 0.3471
pitch bias 0.4372
Sensor 4 0.1171 0.2705 0.1171 0.1282 0.1017
roll bias 0.1324

Average NEES Chi-square 95% interval
12.365 11.059 12.979

Table II
Short-Range Scenario: Verification of the Statistical Efficiency with the CRLB, nMC = 100 runs; All Quantities are in mrad

CRL square root Triangulation CRLB [19] HCRLB [13], [14] RMSE 95% probability
Component (present work) square root Square root (present work) interval (41)

Sensor 1 0.1306 0.1425 0.1305 0.1325 0.1158
yaw bias 0.1454
Sensor 1 0.1569 0.1750 0.1569 0.1629 0.1391
pitch bias 0.1746
Sensor 1 0.0693 0.1203 0.0693 0.0706 0.0607
roll bias 0.0779
Sensor 2 0.1092 0.1262 0.1092 0.1057 0.0963
yaw bias 0.1222
Sensor 2 0.1067 0.1385 0.1067 0.1162 0.0942
pitch bias 0.1193
Sensor 2 0.0792 0.0955 0.0792 0.0722 0.0686
roll bias 0.0897
Sensor 3 0.1319 0.1595 0.1319 0.1337 0.1160
yaw bias 0.1477
Sensor 3 0.0873 0.1019 0.0872 0.0977 0.0765
pitch bias 0.0978
Sensor 3 0.0623 0.0632 0.0623 0.0595 0.0548
roll bias 0.0697
Sensor 4 0.0799 0.0935 0.0799 0.0845 0.0697
yaw bias 0.0902
Sensor 4 0.1447 0.1676 0.1447 0.1552 0.1264
pitch bias 0.1631
Sensor 4 0.0699 0.1148 0.0699 0.0659 0.0616
roll bias 0.0782

Average NEES Chi-square 95% interval
12.253 11.059 12.979
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Fig. 4. CRLB square root of bias estimates compared to number of
time steps for the short-range scenario with two targets.

have a good bias estimate and what to expect in bad con-
ditions. The CRLB is calculated for the short-range sce-
nario but with a spread of time steps from 10 time steps
(at 10 Hz, i.e., 1 s) to 400 time steps (40 s). The results of
this are seen in Figs. 4 and 5.

In the case of this two-target short-range scenario,
we see that within 150 time steps (15 s) all the bias er-
rors reduce to below half of the noise standard deviation.
This is particularly good as the bias estimation is able to
overcome the bias error relatively quickly, and certainly
before the targets reach their destination. Furthermore,
the RMSE graph matches the CRLB graph, showing
that this method retains efficiency even as the number
of measurements decreases,which would accordingly re-
duce the observability and accuracy of bias estimation.
This result proves a degree of resilience of this method
to poor observability, as the method remains efficient,
even when the error in the bias estimates is likely worse
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Fig. 5. RMSE of bias estimates compared to number of time steps
for the short-range scenario with two targets.

50 100 150 200 250 300 350

Number of Timesteps

0

0.002

0.004

0.006

0.008

0.01

0.012

C
R

LB
 S

qu
ar

e 
R

oo
t (

R
ad

ia
ns

)

Sensor 1 Yaw
Sensor 1 Pitch
Sensor 1 Roll
Sensor 2 Yaw
Sensor 2 Pitch
Sensor 2 Roll
Sensor 3 Yaw
Sensor 3 Pitch
Sensor 3 Roll
Sensor 4 Yaw
Sensor 4 Pitch
Sensor 4 Roll

Fig. 6. CRLB square root of bias estimates compared to number of
time steps for the short-range scenario with one target.

than the biases themselves. However, in this case there
are two targets, and hence there is a more diverse set of
data for elimination of the biases.

Next, we investigate the perhaps more common sit-
uation that there be only a single target. Figs. 6 and 7
show that the performance deteriorates. The CRLB of
the bias estimates does not reduce to below the noise
standard deviation until around 300 time steps (30 s)
and two of the biases are significantly higher as a result
of the sensor’s position relative to the target’s motion.
The RMSE remains comparable to the CRLB even as
the error increases significantly higher than the uncor-
rected bias error, proving efficiency in poor observabil-
ity scenarios. Furthermore, we see that having two tar-
gets is better than having twice as much time, as seen
by the CRLB being lower for two targets (Fig. 4) at 150
time steps than one target (Fig. 6) at 300 time steps. The
biases affect the targets in Cartesian space differently as
a result of their positions; therefore, the accuracy is im-
proved greatly as a result of having additional targets.
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Fig. 7. CRLB square root of bias estimates compared to number of
time steps for the short-range scenario with one target.
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As it is impossible to achieve more accurate bias es-
timates than the CRLB, it may be necessary to either
have knowledge of the target’s state or include addi-
tional targets, such as friendly ones and known objects
that are observed by the sensor, to improve bias esti-
mates within a shorter time frame.Methods of including
such “stationary emitters” are included in works such as
[10] and [11].

VII. CONCLUSION

The CPA-based method is an effective tool for bias
estimation in passive sensor data fusion applications.
The bias pseudo-measurement method can be applied
to angle-only sensors in 3-D to estimate the biases with-
out target state estimation. The bias estimation CRLB
is attained using this method and can be informative
about whether the system has enough data to perform
bias estimation or whether it is necessary to include ad-
ditional information to improve accuracy. Furthermore,
it is possible to reduce the bias residual error to sig-
nificantly below the noise standard deviation. The sim-
ulations show that having additional targets improves
bias estimation accuracy more than having a corre-
sponding increase in time steps, meaning a more di-
verse set of measurements is better than simply having
more.

APPENDIX A

The Jacobians used in this paper need to be calcu-
lated in order to convert the measurements and use ILS.
We first specify the problem formulation that is used for
our measurements and parameters. Before we can pro-
duce our bias pseudo-measurements, the effect of the
nominal rotation must be accounted for and removed
from themeasurements.We use the transformation (13),
which is expanded as

ξ t,bs (k) =
[

αt,bs (k)

εt,bs (k)

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

tan−1

(
λ
t,b,y
s (k)

λt,b,xs (k)

)

tan−1

⎛
⎝ λt,b,zs (k)√

λt,b,xs (k)2 + λ
t,b,y
s (k)2

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

= his

([
αt,n,bs (k)

εt,n,bs (k)

]
,ωn

s

)
, (A1)

where the variable λt,bs is the LOS ray in common
Cartesian space rotated by the bias rotation. To acquire
it, the original LOS ray must be rotated by the inverse of

the nominal rotation. This inverted rotation is

T (ωn
s )

−1 =

⎡
⎢⎢⎣
T11,i(ωn

s ) T12,i(ωn
s ) T13,i(ωn

s )

T21,i(ωn
s ) T22,i(ωn

s ) T23,i(ωn
s )

T31,i(ωn
s ) T32,i(ωn

s ) T33,i(ωn
s )

⎤
⎥⎥⎦ . (A2)

The LOS rays under rotations in common Cartesian
space are

λt,n,bs (k) =

⎡
⎢⎢⎣

λt,n,b,xs (k)

λ
t,n,b,y
s (k)

λt,n,b,zs (k)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
cos(αt,n,bs (k)) cos(εt,n,bs (k))

sin(αt,n,bs (k)) cos(εt,n,bs (k))

sin(εt,n,bs (k))

⎤
⎥⎥⎦ , (A3)

λt,bs (k) =

⎡
⎢⎢⎣

λt,b,xs (k)

λ
t,b,y
s (k)

λt,b,zs (k)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
cos(αt,bs (k)) cos(εt,bs (k))

sin(αt,bs (k)) cos(εt,bs (k))

sin(εt,bs (k))

⎤
⎥⎥⎦

= T (ωn
s )

−1λt,n,bs (k). (A4)

The equations for the individual Cartesian components
of the ray rotated by the inverse nominal rotation are

λt,b,xs (k) = T11,i(ωn
s )λ

t,n,b,x
s (k) + T12,i(ωn

s )λ
t,n,b,y
s (k)

+T13,i(ωn
s )λ

t,n,b,z
s (k), (A5)

λt,b,ys (k) = T21,i(ωn
s )λ

t,n,b,x
s (k) + T22,i(ωn

s )λ
t,n,b,y
s (k)

+T23,i(ωn
s )λ

t,n,b,z
s (k), (A6)

λt,b,zs (k) = T31,i(ωn
s )λ

t,n,b,x
s (k) + T32,i(ωn

s )λ
t,n,b,y
s (k)

+T33,i(ωn
s )λ

t,n,b,z
s (k). (A7)

These equations are used in the calculation of the indi-
vidual partial derivatives for the Jacobian D from equa-
tion (11), which are

∂αt,bs (k)

∂αt,n,bs (k)
=

(
T11,i(ωn

s )
∂αt,bs (k)

∂λt,b,xs (k)
+ T21,i(ωn

s )
∂αt,bs (k)

∂λ
t,b,y
s (k)

+T31,i(ωn
s )

∂αt,bs (k)

∂λt,b,zs (k)

)
∂λt,n,b,xs (k)

∂αt,n,bs (k)

+
(
T12,i(ωn

s )
∂αt,bs (k)

∂λt,b,xs (k)
+ T22,i(ωn

s )
∂αt,bs (k)

∂λ
t,b,y
s (k)

+T32,i(ωn
s )

∂αt,bs (k)

∂λt,b,zs (k)

)
∂λ
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s (k)
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+ T23,i(ωn

s )
∂εt,bs (k)

∂λ
t,b,y
s (k)

+T33,i(ωn
s )

∂εt,bs (k)

∂λt,b,zs (k)

)
∂λt,n,b,zs (k)

∂αt,n,bs (k)
, (A10)

∂εt,bs (k)

∂εt,n,bs (k)
=

(
T11,i(ωn

s )
∂εt,bs (k)

∂λt,b,xs (k)
+ T21,i(ωn

s )
∂εt,bs (k)

∂λ
t,b,y
s (k)

+T31,i(ωn
s )

∂εt,bs (k)

∂λt,b,zs (k)

)
∂λt,n,b,xs (k)

∂εt,n,bs (k)

+
(
T12,i(ωn

s )
∂εt,bs (k)

∂λt,b,xs (k)
+ T22,i(ωn

s )
∂εt,bs (k)

∂λ
t,b,y
s (k)

+T32,i(ωn
s )

∂εt,bs (k)

∂λt,b,zs (k)

)
∂λ

t,n,b,y
s (k)

∂εt,n,bs (k)

+
(
T13,i(ωn

s )
∂εt,bs (k)

∂λt,b,xs (k)
+ T23,i(ωn

s )
∂εt,bs (k)

∂λ
t,b,y
s (k)

+T33,i(ωn
s )

∂εt,bs (k)

∂λt,b,zs (k)

)
∂λt,n,b,zs (k)

∂εt,n,bs (k)
, (A11)

∂αt,bs (k)

∂λt,b,xs (k)
= −λ

t,b,y
s (k)

λt,b,xs (k)2 + λ
t,b,y
s (k)2

, (A12)

∂αt,bs (k)

∂λ
t,b,y
s (k)

= λt,b,xs (k)

λt,b,xs (k)2 + λ
t,b,y
s (k)2

, (A13)

∂αt,bs (k)

∂λt,b,zs (k)
= 0, (A14)

∂εt,bs (k)

∂λt,b,xs (k)
= −λt,b,xs (k)λt,b,zs (k)√

λt,b,xs (k)2 + λ
t,b,y
s (k)2||λt,bs (k)||2

, (A15)

∂εt,bs (k)

∂λ
t,b,y
s (k)

= −λ
t,b,y
s (k)λt,b,zs (k)√

λt,b,xs (k)2 + λ
t,b,y
s (k)2||λt,bs (k)||2

, (A16)

∂εt,bs (k)

∂λt,b,zs (k)
=

√
λt,b,xs (k)2 + λ

t,b,y
s (k)2

(λt,b,xs (k)2 + λ
t,b,y
s (k)2 + λt,b,zs (k)2)

, (A17)

∂λt,n,b,xs (k)

∂αt,n,bs (k)
= − sin(αt,n,bs (k)) cos(εt,n,bs (k)), (A18)

∂λt,n,b,xs (k)

∂εt,n,bs (k)
= − cos(αt,n,bs (k)) sin(εt,n,bs (k)), (A19)

∂λ
t,n,b,y
s (k)

∂αt,n,bs (k)
= cos(αt,n,bs (k)) cos(εt,n,bs (k)), (A20)

∂λ
t,n,b,y
s (k)

∂εt,n,bs (k)
= − sin(αt,n,bs (k)) sin(εt,n,bs (k)), (A21)

∂λt,n,b,zs (k)

∂αt,n,bs (k)
= 0, (A22)

∂λt,n,b,zs (k)

∂εt,n,bs (k)
= cos(εt,n,bs (k)). (A23)

With D calculated, the next step is representing the ef-
fects of the biases on the azimuth and elevationmeasure-
ments using the JacobianC.

Ct,b
s (k) =

⎡
⎣ ∂αt,bs (k)

∂θs

∂αt,bs (k)
∂φs

∂αt,bs (k)
∂ψs

∂εt,bs (k)
∂θs

∂εt,bs (k)
∂φs

∂εt,bs (k)
∂ψs

⎤
⎦ , (A24)
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λts(k) =

⎡
⎢⎢⎣

λt,xs (k)

λ
t,y
s (k)

λt,zs (k)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
cos(αts(k)) cos(ε

t
s(k))

sin(αts(k)) cos(ε
t
s(k))

sin(εts(k))

⎤
⎥⎥⎦

= T (ωb
s )

−1λt,bs (k), (A25)

λt,b,xs (k) = T11(ωb
s )λ

t,x
s (k) + T12(ωb

s )λ
t,y
s (k)

+T13(ωb
s )λ

t,z
s (k), (A26)

λ
t,b,y
s (k) = T21(ωb

s )λ
t,x
s (k) + T22(ωb

s )λ
t,y
s (k)

+T23(ωb
s )λ

t,z
s (k), (A27)

λt,b,zs (k) = T31(ωb
s )λ

t,x
s (k) + T32(ωb

s )λ
t,y
s (k)

+T33(ωb
s )λ

t,z
s (k), (A28)

∂αt,bs (k)
∂ωb

s (i)
=

(
∂αt,bs (k)

∂λt,b,xs (k)

∂T11(ωb
s )

∂ωb
s (i)

+ ∂αt,bs (k)

∂λ
t,b,y
s (k)

∂T21(ωb
s )

∂ωb
s (i)

+ ∂αt,bs (k)

∂λt,b,zs (k)

∂T31(ωb
s )

∂ωb
s (i)

)
λt,xs (k)

+
(

∂αt,bs (k)

∂λt,b,xs (k)

∂T12(ωb
s )

∂ωb
s (i)

+ ∂αt,bs (k)

∂λ
t,b,y
s (k)

∂T22(ωb
s )

∂ωb
s (i)

+ ∂αt,bs (k)

∂λt,b,zs (k)

∂T32(ωb
s )

∂ωb
s (i)

)
λt,ys (k)

+
(

∂αt,bs (k)

∂λt,b,xs (k)

∂T13(ωb
s )

∂ωb
s (i)

+ ∂αt,bs (k)

∂λ
t,b,y
s (k)

∂T23(ωb
s )

∂ωb
s (i)

+ ∂αt,bs (k)

∂λt,b,zs (k)

∂T33(ωb
s )

∂ωb
s (i)

)
λt,zs (k), (A29)

∂εt,bs (k)
∂ωb

s (i)
=

(
∂εt,bs (k)

∂λt,b,xs (k)

∂T11(ωb
s )

∂ωb
s (i)

+ ∂εt,bs (k)

∂λ
t,b,y
s (k)

∂T21(ωb
s )

∂ωb
s (i)

+ ∂εt,bs (k)

∂λt,b,zs (k)

∂T31(ωb
s )

∂ωb
s (i)

)
λt,xs (k)

+
(

∂εt,bs (k)

∂λt,b,xs (k)

∂T12(ωb
s )

∂ωb
s (i)

+ ∂εt,bs (k)

∂λ
t,b,y
s (k)

∂T22(ωb
s )

∂ωb
s (i)

+ ∂εt,bs (k)

∂λt,b,zs (k)

∂T32(ωb
s )

∂ωb
s (i)

)
λt,ys (k)

+
(

∂εt,bs (k)

∂λt,b,xs (k)

∂T13(ωb
s )

∂ωb
s (i)

+ ∂εt,bs (k)

∂λ
t,b,y
s (k)

∂T23(ωb
s )

∂ωb
s (i)

+ ∂εt,bs (k)

∂λt,b,zs (k)

∂T33(ωb
s )

∂ωb
s (i)

)
λt,zs (k). (A30)

To calculateC, it is necessary to evaluate how the biases
affect the azimuth and elevation measurements, which

requires knowledge of the unbiased azimuth and eleva-
tion measurements. To do this, we can debias our mea-
surements using the same method as before with the
nominal rotation based on the current bias estimate.

ξ ts (k) ≈ ξ̂ t, js (k) =
[

α̂
t, j
s (k)

ε̂
t, j
s (k)

]
= hi

(
ζ t,bs (k), ω̂b, j

s

)
, (A31)

∂T11(ωb
s )

∂θbs
= − sin(θbs ) cos(φ

b
s ), (A32)

∂T11(ωb
s )

∂φb
s

= − cos(θbs ) sin(φ
b
s ), (A33)

∂T11(ωb
s )

∂ψb
s

= 0, (A34)

∂T12(ωb
s )

∂θbs
= − sin(θbs ) sin(φ

b
s ) sin(ψ

b
s )

− cos(θbs ) cos(ψ
b
s ), (A35)

∂T12(ωb
s )

∂φb
s

= cos(θbs ) cos(φ
b
s ) sin(ψ

b
s ) (A36)

∂T12(ωb
s )

∂ψb
s

= cos(θbs ) sin(φ
b
s ) cos(ψ

b
s ) + sin(θbs ) sin(ψ

b
s ),

(A37)

∂T13(ωb
s )

∂θbs
= − sin(θbs ) sin(φ

b
s ) cos(ψ

b
s )

+ cos(θbs ) sin(ψ
b
s ),

(A38)

∂T13(ωb
s )

∂φb
s

= cos(θbs ) cos(φ
b
s ) cos(ψ

b
s ), (A39)

∂T13(ωb
s )

∂ψb
s

= − cos(θbs ) sin(φ
b
s ) sin(ψ

b
s )

+ sin(θbs ) cos(ψ
b
s ), (A40)

∂T21(ωb
s )

∂θbs
= cos(θbs ) cos(φ

b
s ), (A41)

∂T21(ωb
s )

∂φb
s

= − sin(θbs ) sin(φ
b
s ), (A42)

∂T21(ωb
s )

∂ψb
s

= 0, (A43)

∂T22(ωb
s )

∂θbs
= cos(θbs ) sin(φ

b
s ) sin(ψ

b
s ) − sin(θbs ) cos(ψ

b
s ),

(A44)

∂T22(ωb
s )

∂φb
s

= sin(θbs ) cos(φ
b
s ) sin(ψ

b
s ), (A45)
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∂T22(ωb
s )

∂ψb
s

= sin(θbs ) sin(φ
b
s ) cos(ψ

b
s ) − cos(θbs ) sin(ψ

b
s ),

(A46)

∂T23(ωb
s )

∂θbs
= cos(θbs ) sin(φ

b
s ) cos(ψ

b
s )

+ sin(θbs ) sin(ψ
b
s ),

(A47)

∂T23(ωb
s )

∂φb
s

= sin(θbs ) cos(φ
b
s ) cos(ψ

b
s ), (A48)

∂T23(ωb
s )

∂ψb
s

= − sin(θbs ) sin(φ
b
s ) sin(ψ

b
s )

− cos(θbs ) cos(ψ
b
s ), (A49)

∂T31(ωb
s )

∂θbs
= 0, (A50)

∂T31(ωb
s )

∂φb
s

= − cos(φb
s ), (A51)

∂T31(ωb
s )

∂ψb
s

= 0, (A52)

∂T32(ωb
s )

∂θbs
= 0, (A53)

∂T32(ωb
s )

∂φb
s

= − sin(φb
s ) sin(ψ

b
s ), (A54)

∂T32(ωb
s )

∂ψb
s

= cos(φb
s ) cos(ψ

b
s ), (A55)

∂T33(ωb
s )

∂θbs
= 0, (A56)

∂T33(ωb
s )

∂φb
s

= − sin(φb
s ) cos(ψ

b
s ), (A57)

∂T33(ωb
s )

∂ψb
s

= − cos(φb
s ) sin(ψ

b
s ). (A58)

In order to transform the effect of the biases when con-
verting into Cartesian,we use the JacobianB from equa-
tion (24) for which the gradients are calculated as

∇ξ t1,ξ
t
2
xt,c12′ (k) =

⎡
⎢⎢⎢⎢⎢⎣

∂xt,c
12′

∂αt1

∂xt,c
12′

∂εt1

∂xt,c
12′

∂αt2

∂xt,c
12′

∂εt2

∂yt,c
12′

∂αt1

∂yt,c
12′

∂εt1

∂yt,c
12′

∂αt2

∂yt,c
12′

∂εt2

∂zt,c
12′

∂αt1

∂zt,c
12′

∂εt1

∂zt,c
12′

∂αt2

∂zt,c
12′

∂εt2

⎤
⎥⎥⎥⎥⎥⎦ , (A59)

∇ξ t1,ξ
t
2
xt,c12′′ (k) =

⎡
⎢⎢⎢⎢⎢⎣

∂xt,c
12′′

∂αt1

∂xt,c
12′′

∂εt1

∂xt,c
12′′

∂αt2

∂xt,c
12′′

∂εt2

∂yt,c
12′′

∂αt1

∂yt,c
12′′

∂εt1

∂yt,c
12′′

∂αt2

∂yt,c
12′′

∂εt2

∂zt,c
12′′

∂αt1

∂zt,c
12′′

∂εt1

∂zt,c
12′′

∂αt2

∂zt,c
12′′

∂εt2

⎤
⎥⎥⎥⎥⎥⎦ . (A60)

To improve clarity in the calculation of these partial
derivatives, the conversion equations are simplified by
using

γ t
1 = (λt1)

′p1,2 − ((λt1)
′λt2)((λ

t
2)

′p1,2), (A61)

γ t
2 = ((λt1)

′λt2)((λ
t
1)

′p1,2) − (λt2)
′p1,2, (A62)

γ t
x,1 = λt,x1 γ t

1, (A63)

γ t
y,1 = λ

t,y
1 γ t

1, (A64)

γ t
z,1 = λt,z1 γ t

1, (A65)

γ t
x,2 = λt,x2 γ t

2, (A66)

γ t
y,2 = λ

t,y
2 γ t

2, (A67)

γ t
z,2 = λt,z2 γ t

2, (A68)

κ t12 = 1 − ((λt1)
′λt2)

2, (A69)

which results in the equations

xt,c12′ = x1 + γ t
x,1

κ t12
, (A70)

xt,c12′′ = x2 + γ t
x,2

κ t12
, (A71)

yt,c12′ = y1 +
γ t
y,1

κ t12
, (A72)

yt,c12′′ = y2 + γ t
y,2

κ t12
, (A73)

zt,c12′ = z1 + γ t
z,1

κ t12
, (A74)

zt,c12′′ = z2 + γ t
z,2

κ t12
, (A75)

∂xt,c12′

∂ξ ts
=

κ t12
∂γ t

x,1

∂ξ ts
− γ t

x,1
∂κ t12
∂ξ ts

(κ t12)
2

, (A76)

∂xt,c12′′

∂ξ ts
=

κ t12
∂γ t

x,2

∂ξ ts
− γ t

x,2
∂κ t12
∂ξ ts

(κ t12)
2

, (A77)
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∂yt,c12′

∂ξ ts
=

κ t12
∂γ t

y,1

∂ξ ts
− γ t

y,1
∂κ t12
∂ξ ts

(κ t12)
2

, (A78)

∂yt,c12′′

∂ξ ts
=

κ t12
∂γ t

y,2

∂ξ ts
− γ t

y,2
∂κ t12
∂ξ ts

(κ t12)
2

, (A79)

∂zt,c12′

∂ξ ts
=

κ t12
∂γ t

z,1

∂ξ ts
− γ t

z,1
∂κ t12
∂ξ ts

(κ t12)
2

, (A80)

∂zt,c12′′

∂ξ ts
=

κ t12
∂γ t

z,2

∂ξ ts
− γ t

z,2
∂κ t12
∂ξ ts

(κ t12)
2

, (A81)

∂γ t
x,1

∂αt1
= − sin(αt1) cos(ε

t
1)γ

t
1 + cos(αt1) cos(ε

t
1)

∂γ t
1

∂αt1
,

(A82)

∂γ t
x,1

∂αt2
= cos(αt1) cos(ε

t
1)

∂γ t
1

∂αt2
, (A83)

∂γ t
x,1

∂εt1
= − cos(αt1) sin(ε

t
1)γ

t
1 + cos(αt1) cos(ε

t
1)

∂γ t
1

∂εt1
,

(A84)

∂γ t
x,1

∂εt2
= cos(αt1) cos(ε

t
1)

∂γ t
1

∂εt2
, (A85)

∂γ t
y,1

∂αt1
= cos(αt1) cos(ε

t
1)γ

t
1 + sin(αt1) cos(ε

t
1)

∂γ t
1

∂αt1
,

(A86)

∂γ t
y,1

∂αt2
= sin(αt1) cos(ε

t
1)

∂γ t
1

∂αt2
, (A87)

∂γ t
y,1

∂εt1
= − sin(αt1) sin(ε

t
1)γ

t
1 + sin(αt1) cos(ε

t
1)

∂γ t
1

∂εt1
,

(A88)

∂γ t
y,1

∂εt2
= sin(αt1) cos(ε

t
1)

∂γ t
1

∂εt2
, (A89)

∂γ t
z,1

∂αt1
= sin(εt1)

∂γ t
1

∂αt1
, (A90)

∂γ t
z,1

∂αt2
= sin(εt1)

∂γ t
1

∂αt2
, (A91)

∂γ t
z,1

∂εt1
= cos(εt1)γ

t
1 + sin(εt1)

∂γ t
1

∂εt1
, (A92)

∂γ t
z,1

∂εt2
= sin(εt1)

∂γ t
1

∂εt2
, (A93)

∂γ t
x,2

∂αt1
= cos(αt2) cos(ε

t
2)

∂γ t
2

∂αt1
, (A94)

∂γ t
x,2

∂αt2
= − sin(αt2) cos(ε

t
2)γ

t
2 + cos(αt2) cos(ε

t
2)

∂γ t
2

∂αt2
,

(A95)

∂γ t
x,2

∂εt1
= cos(αt2) cos(ε

t
2)

∂γ t
2

∂εt1
, (A96)

∂γ t
x,2

∂εt2
= − cos(αt2) sin(ε

t
2)γ

t
2 + cos(αt2) cos(ε

t
2)

∂γ t
2

∂εt2
,

(A97)

∂γ t
y,2

∂αt1
= sin(αt2) cos(ε

t
2)

∂γ t
2

∂αt1
, (A98)

∂γ t
y,2

∂αt2
= cos(αt2) cos(ε

t
2)γ

t
2 + sin(αt2) cos(ε

t
2)

∂γ t
2

∂αt2
,

(A99)

∂γ t
y,2

∂εt1
= sin(αt2) cos(ε

t
2)

∂γ t
2

∂εt1
, (A100)

∂γ t
y,2

∂εt2
= − sin(αt2) sin(ε

t
2)γ

t
2 + sin(αt2) cos(ε

t
2)

∂γ t
2

∂εt2
,

(A101)

∂γ t
z,2

∂αt1
= sin(εt2)

∂γ t
2

∂αt1
, (A102)

∂γ t
z,2

∂αt2
= sin(εt2)

∂γ t
2

∂αt2
, (A103)

∂γ t
z,2

∂εt1
= sin(εt2)

∂γ t
2

∂εt1
, (A104)

∂γ t
z,2

∂εt2
= cos(εt2)γ

t
2 + sin(εt2)

∂γ t
2

∂εt2
, (A105)

86 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 15, NO. 2 DECEMBER 2020



∂γ t
1

∂αt1
= cos(εt1) sin(α

t
1)(x1 − x2) − cos(αt1) cos(ε

t
1)(y1 − y2)

− cos(αt2) cos(ε
t
2) cos(ε

t
1) sin(α

t
1) sin(ε

t
2)(z1 − z2)

+ cos(εt2) sin(α
t
2) cos(α

t
1) cos(ε

t
1) sin(ε

t
2)(z1 − z2)

− cos(αt2) cos(ε
t
2) cos(α

t
2) cos(ε

t
1) cos(ε

t
2) sin(α

t
1)(x1 − x2)

+ cos(εt2) sin(α
t
2) cos(α

t
1) cos(α

t
2) cos(ε

t
1) cos(ε

t
2)(x1 − x2)

− cos(αt2) cos(ε
t
2) cos(ε

t
1) cos(ε

t
2) sin(α

t
1) sin(α

t
2)(y1 − y2)

+ cos(εt2) sin(α
t
2) cos(α

t
1) cos(ε

t
1) cos(ε

t
2) sin(α

t
2)(y1 − y2),

(A106)

∂γ t
1
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