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This paper reviews key elements in the development of multiple-
hypothesis tracking (MHT), a leading paradigm for multitarget track-
ing, as well as graph-based tracking (GBT), a scalable version of
MHT that has proven effective in kinematic track stitching applica-
tions. We introduce a novel MHT/GBT algorithm that we denote as
multi-INT GBT (MI-GBT). It provides computational benefits over
classical MHT, while allowing for static components of the target state
that classical GBT does not. Thus, the MI-GBT provides an effective
method for multisensor feature-aided track fusion with disparate sen-
sors. We quantify the improved performance over the MHT solution

in Monte Carlo studies.

Manuscript received January 28, 2019; revised May 8, 2019, October
30,2019, and November 5,2019; released for publication 0,2019.

Refereeing of this contribution was handled by Jason L. Williams.

S. P. Coraluppi and C. A. Carthel are with Systems and Tech-
nology Research, 600 West Cummings Park, Woburn, MA
01801, USA (E-mail: Stefano.Coraluppi@STResearch.com,
Craig.Carthel@STResearch.com).

A. S. Willsky is with the Department of Electrical Engineering, Mas-
sachusetts Institute of Technology, 77 Massachusetts Avenue, Cam-
bridge, MA 02139, USA (E-mail: willsky@mit.edu).

1557-6418/19/$17.00 © 2019 JAIF

I.  INTRODUCTION

Many approaches have been developed to address
the multitarget tracking (MTT) problem, whereby an
unknown and time-varying set of objects is to be
tracked while contending with unknown measurement
origin, missed detections, and false alarms [1]. Multiple-
hypothesis tracking (MHT) was first posed in hypothesis-
oriented form [2] and was later shown to admit hypoth-
esis factorization (assuming Poisson-distributed births
and clutter) and a more efficient track-oriented formula-
tion [3], consistent with the integer linear program (ILP)
framework of the MTT problem that had been proposed
previously [4].

The ILP can be solved via relaxation approaches [5]-
[7], and distributed processing can provide performance
and robustness advantages in many settings [8]-[10]. The
MHT paradigm has been generalized to consider ob-
ject births without detection, enabling improved perfor-
mance in dim-target settings [11]. More recently, exten-
sion to allow for multiple measurements per target per
scan has been developed to deal with extended objects
and multipath phenomena [12], [13].

When a simplifying Markovian (path-independence)
assumption may be invoked, significant computational
gains can be achieved. In the hypothesis-oriented MHT
(HO-MHT) context, the simplified formulation may be
solved by use of the Viterbi algorithm on an expanded
trellis [14]. The more general treatment, with missed de-
tections and clutter, was addressed in a series of pa-
pers culminating in [15]. Application of the approach to
track-level inputs is discussed in [16]. While these are
valuable contributions, unfortunately these approaches
do not scale well when the numbers of measurements
and targets are large. Also, these papers do not contend
with target birth and death phenomena, which appear
somewhat cumbersome to include.

Shortly after the publication of [14], the same simpli-
fication was introduced in the track-oriented MHT (TO-
MHT) context [17]. This established the graph-based
tracking (GBT) paradigm for MTT. The approach is not
generally adopted for remote-sensing applications (e.g.,
sonar or radar tracking), since the Markovian assump-
tion is too strong in these settings. Nonetheless, GBT for
track maintenance with missed detections and clutter is
developed in [18]. Perhaps more significantly, applica-
tion of GBT to track-level inputs is discussed in [19]; this
represents an important contribution in that, for track-
level kinematic data, the Markovian assumption is quite
appropriate.

In some settings, the Markovian assumption inher-
ent in both Viterbi and GBT methods is not appro-
priate. Indeed, some elements of the target state vec-
tor, e.g., object size, color, etc., may be fixed or slowly
varying. In such cases, measurement sequences do not
exhibit a path-independence property, except when
these slowly varying elements are always observed. Ac-
cordingly, when feature measurements are temporally
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TABLE I
Assumptions and Some Solution Approaches for MTT

Partially Markov
Assumptions General Markov data data
General HO-MHT [2]  Notinvestigated  Viterbi [14]
Poisson targets
and clutter TO-MHT [3] MI-GBT [22] GBT [17]

sparse, until recently it was necessary to resort to MHT
solutions.

Recent work has extended the GBT approach to deal
with feature states. In [20], a novel GBT multicommod-
ity flow approach is discussed. The approach assumes
a known number of objects, a unique object of each
type, single-sensor data, and a batch-processing formu-
lation. The methodology is promising in that it leads
to a much smaller ILP than with an MHT approach.
In [21] and [22], we develop a similar approach—the
multi-INT GBT (MI-GBT)—for the general multisen-
sor MTT problem, with a temporally sparse identity
sensor and one or more kinematic sensors. Refs. [21]
and [22] discuss as well a Markov chain Monte Carlo
(MCMC) approach for the multi-INT (i.e., disparate-
sensor) track fusion problem that builds on the work
in [23]; for our application with sparse identity data,
MCMC provides a promising approach to solution re-
finement. Related investigations of generalized GBT
methods include [24] and [25].

Most recently, in [26] we relax the unique-type as-
sumption in the MI-GBT, allowing for multiple objects
of each type, and explore performance for multitarget
track maintenance. Here, we discuss a sliding-window
approach to ILP formation and resolution, enabling
scalable processing of lengthy scenarios that are oth-
erwise computationally prohibitive with earlier, batch-
processing solution methods.

Table I provides a summary view of some paradigms
for the MTT problem, focusing on hard data association
and labeled target tracking. (See [1] and [27] for a discus-
sion of other methods.) Given the computational advan-
tages of the TO-MHT approach that avoids the global-
hypothesis enumeration inherent in HO-MHT, we have
chosen not to investigate a hybrid HO-MHT/Viterbi ap-
proach. This paper makes further progress on the MI-
GBT that provides a hybrid TO-MHT/GBT paradigm
that exploits path independence when possible, and in-
troduces hypothesis branching when necessary to con-
tend with identity data.

This paper is organized as follows. In Section II, we
review salient elements of MHT. Section III discusses
both MHT and MI-GBT for the multi-INT track fusion
problem with sparse identity data, allowing for multi-
ple objects of each type and with sliding-window pro-
cessing. Section IV describes performance results for
MI-GBT compared to the MHT baseline solution. We
establish the superior performance characteristics of

MI-GBT over both GBT and MHT. Conclusions are
provided in Section V.

II.  MULTIPLE-HYPOTHESIS TRACKING

In MTT, we seek a set of trajectories over a sequence
of times t* = (¢, ..., ;) that we may denote compactly
by X*. Each trajectory in this set has a time of birth, an
evolution in target state space, and (possibly) a time of
death. Hence, we are interested in identifying the time
evolution of an unknown (and time-varying) number
of objects. We observe a sequence of sets of measure-
ments ZX = (Z, ..., Z). The usual simplifying assump-
tion in the MTT problem formulation is that, with each
sensor scan, each target gives rise to at most one mea-
surement. It is not known which measurement originates
from which object, and there are as well false measure-
ments that are not target originated.

A.  MAP Estimation and Hypothesis-Oriented MHT

In statistical estimation theory, it is well established
that minimization of the Bayes risk with an underlying
cost function that penalizes all estimation errors uni-
formly is achieved with the conditional mode. Stated an-
other way, the minimum probability of error estimator
is given by the maximum a posteriori (MAP) estimator
[28]. However, use of the MAP criterion for the MTT
problem, when applied directly to p(X*|Z¥), is concep-
tually problematic [29, pp. 494-500].

One may explicitly consider an explanation for the
data, i.e., to specify which measurements are to be re-
jected as false and how target-originated measurements
are to be associated. Let us denote by g one such
global hypothesis or explanation. This leads to a proba-
bilistic conditioning approach and the following expres-
sion for the multitarget posterior probability distribu-
tion p(Xk|ZK)!:

p(XMZ =3 p(XMZ' ¢ p (¢"12").

)

Note that, for any MTT problem of reasonable size,
the space of global hypotheses—and hence the summa-
tion in Eq. (1) —is enormous.

The MHT paradigm addresses both the conceptual
difficulty associated with MAP estimation applied to
p(X*k|Z¥) and the computational difficulty associated
with the representation given by Eq. (1). In particular,
MHT seeks the MAP global hypothesis ¢* and condi-
tions on this global hypothesis to estimate the set of tar-
get trajectories while discarding competing global hy-
potheses. This is captured in the following equations:

¢ = arg max,ep (4124). @

IEquation (1) is a conceptual expression; a more rigorous treatment
with the random finite set formalism may be found in [30].
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X* = arg maxy« p (X*|Z*, ¢Y). 3)

Note that X* is representative of a set of trajecto-
ries, each with a time of birth, an evolution in state space,
and (possibly) a time of death. We will not discuss here
the random finite set treatment of the MTT problem;see
[29] and [30] for more details.

Solving Eq. (3) entails the solution to a set of smooth-
ing problems. Most MTT approaches include recur-
sive filtering but do not focus on trajectory smooth-
ing. Indeed, while useful for output reporting, trajectory
smoothing does not aid in data association; i.e., it does
not contribute to solving Eq. (2).

Though solving Eq. (2) is not conceptually problem-
atic, it remains computationally prohibitive. In practice,
most MHT implementations consider a sliding-window
formulation and resolve (i.e., select) global hypotheses
with some delay. Having solved Eq. (2), solving Eq. (3)
amounts to solving a set of filtering problems with no
measurement-origin uncertainty. It is often beneficial
to decouple data association and track extraction (see
[31]).

Computational and real-time constraints require that
we adopt a recursive formulation of p(g*|Z¥). The fol-
lowing expression may be derived:

P (ZdZ51, 4) p (q¥1g*7") p (¢F 11 ZFT)

Pla'17) = P (ZdZFT)

“4)
This is the global-hypothesis recursion that expresses
p(g¥|Z¥) as a function of p(g*~'|Z*~!) and the current
scan of data Zy.

B. Track-Oriented MHT

Though useful, the recursion in Eq. (4) is generally
intractable in the sense that the space of global hypothe-
ses is quite large. Fortunately, under some simplifying as-
sumptions, namely, a Poisson-distributed number of tar-
get births and false alarms at each scan, the posterior
probability of a global hypothesis p(g¥|Z*) may be ex-
pressed as a product over local (or track) hypotheses as-
sociated with g*.

The Poisson assumption is reasonable in many set-
tings. We consider a continuous-time process with ex-
ponentially distributed target interarrival (birth) times
with parameter \,, and exponentially distributed tar-
get lifetime with parameter A,. Discrete-time statistics
may be readily obtained, leading to a Poisson distributed
number of births with mean uy(¢) and death probability
Dy (t) over an interval of duration ¢:

)= 12 (1), ®
p(t)=1—e", 6)

For simplicity, in the following we will omit the time
interval ¢t and use the birth rate and death probability

wp and p,, respectively. Note that the Poisson birth pro-
cess has an intuitively appealing independence property,
whereby the numbers of births in temporally nonover-
lapping intervals are independent random variables
[32]. Similarly, the Poisson false alarm assumption (with
mean A) characterizes clutter statistics in many appli-
cation domains. For target-originated measurements, we
assume that, at each scan, each target is detected with
probability pq.

Let t be the number of tracks in the parent global
hypothesis g¥~! at time #;,_;, let r = |Z,| be the num-
ber of measurements in the current scan at time f, and
let b, x, and d be the number of target births, deaths, and
measurement updates in global hypothesis g* at time #,
respectively.

We now express the global-hypothesis recursion
given by Eq. (4) in detail. First, let us consider the fac-
tor p(q*|g*1). For this, we introduce the auxiliary vari-
able ¥ that specifies the number of births b, the number
of target deaths yx, and the number of targets with mea-
surement update d. We use the following conditioning
approach that relies on y:

p (qqu"“) =p (wqu"‘l) p (qquk‘l, llfk) )

The first factor in Eq. (7) denotes the probability of
observing b target births, x deaths, and d measurement
updates from t targets, and r — d — b false alarms (to
account for all remaining measurements). This may be
written as follows, noting that we rely on 1) the Pois-
son distribution to account for b (detected) births and
r — d — b false alarms, as well as 2) the binomial dis-
tribution for the probability of observing some num-
ber of successes in a set of independent trials—this is
relevant to the factors that account for y deaths from
7 targets and d detections from the surviving t —
targets:

p (g ") = <;> PL = p)E (T y x)

t—x—d (pattn)” exp (—pp)
b!

x p§(1 = pa)

A" exp (—A)
r—d—b)!

®)

The second factor in Eq. (7) denotes the probabil-
ity of a particular global hypothesis, conditioned on the
parent hypothesis and on the cardinalities associated
with ¥,. As all association probabilities have the same
a priori probabilities, this factor can be written as follows.
Note that the denominator terms quantify the number of
ways of selecting the target deaths, the number of ways
of selecting which tracks to update, the number of ways
of selecting measurements and assigning them to tracks
(where ordering matters), and the number of ways of se-
lecting birth measurements among the remaining r — d

154 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL.14,NO.2 DECEMBER 2019



measurements.
1

O e ()

)
Combining Egs. (8) and (9) according to Eq. (7)
yields

_ exp(—up — A) A"
p(qk|qk1):{ p( ;)! ) }pi

. d
(1= pot - pay (=R

A
« (Datoy”
A

The factor p(Z;|Z¥', ¢) in Eq. (4) accounts for the
probability of observing a set of measurements given
a global hypothesis. It is a product over filter residual
scores; hence, it may be written as follows, where, under
q*, Jq is the set of track update measurements, J;, is the
set of false alarms, J, is the set of target birth measure-
ments, f(-|Z¥~1, g¥) is the conditional probability distri-
bution of a target measurement (with no conditioning in
the case of object birth), and f,(+) is the distribution of
false alarms in measurement space:

p(ZkIZk_l,qk) =T1 f(ZjIZk_l,qk) I1 7@

zj€lq zj€ly

: l_[ ffa (Zj)'

zj€lp

(10)

(11)

Equations (10) and (11) may be substituted into
Eq. (4), resulting in the following TO-MHT recursion,
in which we denote by C the factor that is common to
all global hypotheses. (This common factor need not be
computed for MAP estimation, and indeed its evalu-
ation would rely on p(Z;|Z*!), requiring summation
over all global hypotheses.) The restriction that each
measurement be used at most once in track formation,
and that all measurements be accounted for, is captured
in Eq. (12c), where J is the set of indices for measure-
ment set Zy.

p(d*1Z%) = pX((1 = py) (1 — pa))" "

1—[ (1 = py) paf (212571, ¢%)

i A fia (Zj)
11 paof(Z) -, (1171),  (12a)
jeh A fra (2)) ’
[w} [1: ez fra (z))
c_ (12b)

p(Zi| ZK-1) ’

JanJy = @, JaNJp = @, JyNJp = @, JgUJpUJp = J 7.
(12¢)

Equation (12) is of fundamental importance in that it
factors the global hypothesis score into (dimensionless)
track scores. Accordingly, it is unnecessary to consider
each global hypothesis probability explicitly. Indeed, up
to the hypothesis-independent factor C, a global hypoth-
esis probability may be evaluated as a product over local
hypothesis factors. This in turn allows the determination
of ¢¥, the solution to Eq. (2), without explicit enumera-
tion of global hypotheses.

Thus, the TO-MHT formalism results in an ILP, with
an objective function that may be expressed compactly
by Eq. (13), where the cost ¢; associated with track hy-
pothesis x; results from statistics-associated targets and
sensors; the variable x; € {0, 1} may be understood as an
indicator variable that corresponds to selecting a track
hypothesis when setting x; = 1. The sum is over all track
hypotheses within a hypothesis reasoning window:

J= E CiXi,
;

Ax < b.

(13)

(14)

In addition to the objective, the ILP includes con-
straints captured by Eq. (14) that require that each mea-
surement be used at most once in track formation, and
that each resolved track from the start of the reasoning
window be accounted for.

Ill.  MULTI-INT TRACK FUSION

Section II described TO-MHT (hereafter, MHT) for
detection-level MTT. We now consider the MTT prob-
lem, downstream of single-sensor trackers. That is, up-
stream association decisions have been made, and we
assume negligible residual false alarms. The challenge
is to perform correct track association over time and
across sensors. We assume that tracks are composed of
sequences of measurements, so that optimal filtering can
be performed without the need to contend with corre-
lated state estimates due to common target process noise
[27]. We are interested in both real-time and forensic
settings. The principal challenge is how to contend with
temporally sparse identity information that is crucial to
exploit for high-performance association decisions. Af-
ter providing some modeling details, we will first discuss
the conventional MHT solution and then describe the
MI-GBT approach.

A. Some Modeling Details

As noted earlier, we model target existence via a
Poisson birth—death process; see Egs. (5) and (6). For
simplicity, we will discuss our work in the context of
linear Gaussian dynamics and measurements, though
the solution methodologies are applicable more broadly.
(The model described here is what we use for the sim-
ulation results in Section IV.) Specifically, we will as-
sume independent target dynamics according to a stable,
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stationary generalization to nearly constant velocity
(NCV) motion, as given by a second-order Ornstein—
Uhlenbeck (OU) process [33].

Each object is of a fixed type, with a probability
distribution over the finite set of types given by the
vector piype, With element pyype (i) being the probabil-
ity that an object is of type i. We may handle unique
objects of type i by using a small value for piype(i).
This modeling approach is more robust than disallow-
ing multiple objects, as the multiplicity is sometimes nec-
essary to contend with potentially erroneous sliding-
window association decisions. Also, all objects must be
of some type; hence, we generally include the type
“other” to include all those that are not of specific
interest.

Kinematic tracks are composed of linear measure-
ments with additive Gaussian noise with vy ~ N(0, R):

(15)

As noted earlier in the MHT derivation, at each scan
targets are detected with probability py. For simplicity,
we do not consider motion-dependent (or, more gener-
ally, state-dependent) detection statistics. Further, we do
not consider identity-dependent detection statistics, as
when objects of certain types are easier to detect than
others.

We assume that identity sensors differ from kine-
matic sensors in two key respects. First, we assume a
low revisit time between scans; hence, the identity de-
tections are not associated over time. Second, detections
include both kinematic information and precise target-
type information. The type information is highly infor-
mative but does not provide association information, as
there may be multiple objects of the same type. De-
tection and localization quality (pg and Ry) differ for
kinematic and identity sensors. We do not consider false
alarms from the identity sensor; this is reasonable in set-
tings where automatic target recognition is performed to
provide object-type information and to reject spurious
detections.

Yk = Cexp + vk

B. MHT Approach

The detection-level TO-MHT recursion given by
Eq. (12) yields a dimensionless likelihood ratio associ-
ated with each track hypothesis. Normalization is with
respect to a null hypothesis whereby all measurements
are false alarms. For a track with index i, the negative
log of this score yields the coefficient c; in the objective
function to be minimized, as given by Eq. (13).

For track-level association, since all tracks (includ-
ing identity singleton tracks) are assumed to be target
originated, we do not normalize with respect to the same
null hypothesis. We may still utilize dimensionless track
scores by normalizing with respect to another null hy-
pothesis, whereby all tracks are unassociated.

Let z; represent a track (i.e., a sequence of previ-
ously associated measurements) and let L(z") denote

the track likelihood associated with a sequence of tracks
7" = (z1, ..., zn)-Note that L(z") is the (unnormalized)
local hypothesis contribution to the global hypothesis
probability. If this sequence corresponds to the ith track
hypothesis, we may express the coefficient ¢; in Eq. (13)
as follows:
¢i=—log L ("). (16)
The likelihood L(z") accounts for target birth, a
sequence of detection and missed-detection events,
and (possibly) a target death. This score can be com-
puted recursively based on the following probabilistic
conditioning:

L(Z")=L(z71) l_[ L<z1|zj*1>. 17)

Jj=2,....n

We may alternatively adopt a dimensionless track
score as given by the following. This is advantageous
when solving Eq. (13) with fast greedy track selection
methods, in lieu of a relaxation approach.

L(z") (18)

¢i = —log

As with detection-level MHT, most nontrivial track
fusion problems entail hypothesis-space reduction via
sliding-window processing. That is, with some temporal
delay, we resolve ambiguity and identify a single global
hypothesis by solving an appropriately defined ILP as
in Eq. (13). Then, we ingest further data for processing,
and solve a new ILP. The hypothesis tree depth is gen-
erally identified as the number of scans of data (n-scan)
between the resolved time and current time [12], [31].
Global nearest-neighbor (GNN) processing corresponds
to n-scan = 0 [27].

The MHT track fusion capability is quite general and
allows for an arbitrary number of kinematic and iden-
tity sensor inputs. Key assumptions include target in-
dependence (both existence and dynamics) and correct
(but not necessarily complete) upstream association de-
cisions. Hence, we may associate multiple tracks from
the same sensor, provided there is no scan with measure-
ments from more than one track.

C. GBT Approach

Computational simplifications may be achieved if lo-
cal (track) hypotheses satisfy a path-independence as-
sumption, whereby the track likelihood may be factored
with pairwise contributions to the likelihood.

The fundamental path-independence assumption
that we introduce is appropriate for single-sensor kine-
matic track-level data. Again, let z; represent a track (i.e.,
a sequence of previously associated measurements) and
let L(z") denote the track likelihood associated with a
sequence of tracks. The path-independence assumption

156 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL.14,NO.2 DECEMBER 2019



amounts to the following:

L) =L@) [] L(alz")
i=2,..,n

~L(z1) [] Lilzia).

i=2,...,n

(19)

The path-independence assumption enables a graph-
based representation of the MTT problem with pairwise
costs derived from conditional likelihoods.

Under the GBT formalism, we consider a set of kine-
matic tracks that we represent by a set of nodes V. We
consider also source and sink nodes, denoted by vy and
Voo, Tespectively. We define the augmented set of nodes
by V. = V U {), vs}. We consider a directed graph
G = (V, A), where A is a set of edges. For each feasible
edge (i, j) € A, i.e., with no temporal overlap between
the corresponding tracks, we define the cost ¢;; by the
negative log conditional likelihood:

¢y = —log L (vjlvy). (20)

Note that the likelihood ¢p; = L(vj|vg) = L(v;) ac-
counts for target birth. As all track likelihoods account
already for target death, we have L(ve|vi) = 1.

The kinematic GBT formulation leads to the follow-
ing ILP:

J = Z cijxi]-, (21)
(i,j)eA
Xij (S {0, 1} V(i, ]) € A, (22)
Z Xij = 1 Vvi € V, (23)
ir(i,j)eA
Y oxj=1 VyeV. (24)

Ji(i,j)eA

We seek the solution that minimizes the objective
(21) subject to constraints (22)—(24). Equations (23) and
(24) ensure that all nodes be used exactly once, and that
flow balance be achieved.

The resulting MAP estimation problem for global
hypothesis g* is over a smaller space than MHT. Indeed,
here a second form of factorization is invoked in ad-
dition to that of TO-MHT, based on Eq. (19). By ex-
ploiting this factorization, we avoid the enumeration of
track hypotheses; rather, the ILP is posed over pairwise-
association variables.

A nice feature of the single-sensor GBT formulation
is that it results in an ILP with special structure: it may be
expressed as a min-cost network flow (MCNF) problem
or, equivalently, as a bipartite matching problem. Thus,
the problem admits an integer solution and faster solu-
tion than a general ILP [34].

As with MHT, we may wish to define dimensionless
scores analogous to Eq. (18). Here, we may adopt the

Fig. 1. Tracks z; and z3 cannot originate from the same target, as
there is a scan where both have a measurement (shown in red).
Avoiding the association in GBT requires a strict condition for

pairwise-association feasibility.

following in lieu of Eq. (20):

L(vjlvi) L (v, vj)

L)L)

Note that the requirement for association feasibil-
ity mentioned above—no temporal overlap between
the corresponding tracks—is stricter than that in MHT.
This is necessary due to the pairwise nature of track
scoring. Consider the example in Fig. 1. MHT com-
putes L(z*) precisely; it must necessarily be zero since
tracks z; and z3 share a relevant sensor scan. On the
other hand, GBT would allow for the association of
the tracks since pairwise feasibility is maintained, were
we not to impose the stricter no temporal overlap
condition.

Indeed, GBT will assume L(z%) &~ L(z3]z2)L(z2]21)
L(z1). In this example, both L(z3]z2) and L(z2|z1) are
nonzero, while L(z?) must be zero. Hence, the approx-
imation is potentially poor for temporally overlapping
tracks, not due to a poor kinematic filtering approxi-
mation but rather due to an incorrect accounting for
measurement-cardinality information.

cij = —log

D. MI-GBT Approach

We wish to leverage the GBT approach while allow-
ing for multiple kinematic and identity sensors, as well
as for identity tracks that violate the Markovian assump-
tion on the data.

Let us first address the need to process multiple
sensors, as illustrated in Fig. 2. We do so by exploit-
ing MHT processing with a dedicated kinematic-fusion
stage, yielding a single, fused kinematic sensor feed. Only
nontemporally overlapping fused tracks (i.e., the strict
condition above) will be feasibly associated in down-
stream MI-GBT processing.

It is worth emphasizing that kinematic processing
may introduce undesired measurement association er-
rors. This is not problematic when one or more objects
remain in close proximity. On the other hand, when a
group of objects splits into two or more, it is impor-
tant to fragment kinematic-only tracks to enable high-
confidence stitching in downstream processing, with the
aid of identity-sensor data.
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Kinematic
sensor tracks

Identity sensor
(singleton) tracks

Fig.2. The MI-GBT is seemingly more restrictive as it requires a
single kinematic and identity feed. However, this can be addressed
with preprocessing that exploits MHT kinematic tracking, as well the
recasting of multiple-measurement identity tracks as unassociated
measurements of a vanishingly small type probability, all due to one
Sensor.

Likewise, there may be multiple identity sensors.
However, since we assume single-measurement identity
tracks, there is no loss of generality in considering all
tracks as originating from a single identity sensor. For
identity measurements that potentially observe different
aspects of the target state, e.g., object color, object size,
etc., we may recast the formulation as a single identity
sensor with vector-valued measurements. For simplicity,
here we consider scalar object types.

It is important to note that the unionizing operation
on identity measurements preserves the scan structure
of the data. That is, if two identity sensors have sensor
scans at the same time, the two scans are kept distinct for
downstream processing. The point-target assumption re-
mains crucial as in MHT; i.e., we have at most one mea-
surement per target per scan.

The second need is to handle identity measurements
that violate the Markovian approximation in Eq. (29).
Indeed, while past kinematic tracks are not relevant to
future kinematic association scores, the same is not true
for identity tracks that specify the object type. Our ap-
proach will be to define an ILP that corresponds to a
multilayer graph, one for each object type. Path indepen-
dence holds within a layer of the track, but not across
layers. Before defining the ILP, we show an illustrative
example.

The advantage of the architecture in Fig. 2 is that we
exploit the MHT for what it performs well, namely, mul-
tisensor kinematic tracking where small hypothesis tree
depths are effective. We defer the disparate-sensor fu-
sion problem, where MHT is severely challenged com-
putationally, to generalized GBT processing.
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Fig.3. A multi-INT track fusion example.

E. MHT and MI-GBT Structure

Consider the notional example in Fig. 3. We have an
unknown number of objects giving rise to three identity
tracks and four kinematic tracks, indicating that there
are red and green objects present.

For simplicity of exposition, we assume a forensic
surveillance problem, in the sense that all data have been
received at the processing center. This enables a compact
representation of the association spaces associated with
competing solution approaches, with nodes represent-
ing input track. Regardless of whether online or foren-
sic analysis is to be performed, the data-association pro-
cess will necessarily rely on sliding-window processing
for computational tractability.

Under the simplifying assumption of no never-
observed objects (the usual assumption in MHT), there
are at most seven objects present, and there are at least
two targets (one red, one green). The MAP solution will
depend on target and sensor statistical assumptions, and
on the measured data themselves. The corresponding
data structure associated with TO-MHT processing may
be represented as illustrated in Fig. 4. Note that, for sim-
plicity, we have expressed each path in the MHT track
forest as a sequence of tracks. This is not fully reflective
of the actual processing sequence, since data are ingested
and processed in proper time order. As an example, in
the leftmost path, some measurements associated with
track 3 follow track C. Track filtering and scoring is per-
formed in proper time sequence.

The MAP solution associated with MHT processing
will be that set of paths that accounts for all the data,
while minimizing the sum of negative log likelihoods as
in Eq. (26). Alternatively, we may use likelihood ratios
as in Eq. (28).

Figs. 5 and 6 illustrate the GBT and MI-GBT graphs,
respectively. For simplicity, in both graphs we have not
drawn the termination node, nor the termination edges
from each node to the termination node. (There is no
edge directly from the birth node to the termination
node.) By default, all edges are directed (downward), ex-

Fig.4. MHT track forest for the example in Fig. 3.
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Fig.5. GBT graph topology for the example in Fig. 3. While the
representation supports computationally efficient solutions, these
cannot exploitation crucial object-type information.

cept where explicitly denoted, i.e., the second edge be-
tween track 3 and node C.

There are several points to note. First, while much
more compact than the MHT structure, the GBT graph
topology does not allow for exploitation of target-type
information (except for the lack of an edge directly con-
necting node B and node C). There is too much simplifi-
cation in the problem formulation, so that feature infor-
mation cannot help the data-association process. Indeed,
target-type information does not satisfy the Markovian
property that applies to kinematic data.

The MI-GBT structure is more compact than that
of MHT, due to the simplifying path-independence as-
sumption. Thus, for instance, each node associated with
track 4 is a sufficient representation of kinematic infor-
mation on the target, without the need for expressing
from whence the target originates. At the same time, it
is crucial to maintain graph layers (or subgraphs) associ-
ated with distinct object types. No flow is permitted be-
tween subgraphs, except for flow from the null subgraph
to the object-type subgraphs.

The null subgraph captures objects for which no
object-type information is known. In the example, these
objects may well be red or green—we do not know. Col-

|
Subgraph G
(green)

|
Null subgraph

Subgraph R
(red)

Fig.6. MI-GBT graph topology for the example in Fig. 3. Colored
edges indicate when type information is inserted into a tracking
solution. Constraints in the ILP ensure that equivalent vertices are
used only once.

ored edges indicate associations where type information
is introduced.

The MI-GBT topology distinguishes between
nonoverlapping tracks and overlapping (nested) tracks.
Indeed, the only temporal overlap that we allow is that
between kinematic and identity tracks. This requires the
use of double (directional) edges between such tracks
when there is temporal overlap. Either both or neither
is to be selected.

In the example in Fig. 3, there is temporal overlap
between track 3 and track C; hence, if these are asso-
ciated, we want flow from track 3 to track C, and then
from track C to track 3. In this manner, track 3 is rel-
evant to (kinematic) association with any preceding or
subsequent tracks, while track C is not. Indeed, it is al-
ways the identity track that is temporally nested in the
kinematic track, not vice versa.

There is an interesting question of how best to break
the symmetry whereby flow might in principle go into
track C, then to track 3, and then back to track C. This
is not admissible and can be avoided by introducing an
inequality constraint that forces flow into node 3 of sub-
graph R, if the cycle from track 3 to track C is active.

Note that the return flow from track C to track 3 must
necessarily be in subgraph R, since the object of interest
is necessarily of type R (red). Note also that, for tracks
1,2, and 4, there is no need for bidirectional flow to any
identity track, since none of these identity tracks is tem-
porally nested in these kinematic tracks. Thus, in particu-
lar, if there is association between one of the tracks (1,2,
4) with track C, any associations with subsequent tracks
would be from track C.

The data fusion that the MI-GBT permits— that be-
tween kinematic tracks and single-measurement identity
tracks—does pose a potential hazard. Indeed, we must
introduce a mechanism to specifically disallow the fu-
sion of multiple identity measurements at the same time
with the same kinematic track. Once more, this can be
achieved with a suitable inequality constraint.

The need for this constraint emphasizes a fundamen-
tal limitation of graph-based reasoning. It is inherently
myopic, in the sense that it reasons only over pairwise-
association scores. While this is reasonable for kine-
matic information, it is not so for cardinality informa-
tion whereby we wish to disallow fusion of multiple mea-
surements at the same time from the same sensor, hence
the need for the constraints noted above. Nor is pair-
wise reasoning sufficient to exploit object-type informa-
tion, hence the need for the expanded (multilayer) graph
structure in MI-GBT that conventional GBT lacks.

Sliding-window n-scan processing to resolve global
hypotheses may be performed on the MI-GBT data
structure, in analogous fashion to how it is performed
in MHT [1].

As an extension to the example above, consider the
scenario in Fig. 7, where we observe an additional kine-
matic track. The corresponding MI-GBT topology is
given in Fig. 8.

MULTIPLE-HYPOTHESIS TRACKING AND GRAPH-BASED TRACKING EXTENSIONS 159



space A 1 3 C
P4 [ J

5
g ® 2 4

time

Fig.7. An extension to the previous multi-INT example.

k. MI-GBT ILP

While our ILP implementation corresponds to the
illustration in Fig. 6 (or Fig. 8, for the larger example),
it will be easier to describe the ILP associated with the
equivalent representation illustrated in Fig. 9. In practice,
we prefer the structure in Fig. 6 as we only spawn sub-
graphs when identity tracks of the corresponding type
are to be processed, and not earlier. There is a one-to-
one correspondence between the two representations.

Let us denote by V the set of kinematic tracks, and
by vy and v, the source and sink vertices, respectively.
We denote by W the set of identity (singleton) tracks of
type k,withk=1,..., K.

In the MI-GBT, each kinematic track node may ap-
pear on multiple graph subgraphs (or layers). It will ap-
pear on all layers if spatial and kinematic gating are not
performed; we assume it does so, for ease of presenta-
tion. On the other hand, each identity track appears only
in one graph layer, e.g., red measurements only in the
red layer, etc. We denote by Vi = V U Wy U {g, v} the
set of vertices in the kth subgraph Gy, and by A, the set
of edges in subgraph Gy, i.e., Gy = (Vi, Ax). Gy is the
null subgraph, where no identity tracks are present. The
full set of identity tracks is given by W =

.....

have Wy = @, as there are no null-type identity measure-
ments.

Recall that in Eq. (25), pairwise scores were indexed
by two tracks. Now we have a third index to account for
object type. Letting K be the number of object types, and
denoting by k = 0 the null index (i.e., no object-type in-
formation), we have the following, where the likelihood
function is understood not to include any contribution
from object type. Note there is no need for edges with

Fig.8. The MI-GBT topology for the scenario in Fig. 7. Constraints
in the ILP ensure that equivalent vertices are used only once.

|
Subgraph G
(green)

|
Null subgraph

Subgraph R
(red)

Fig.9. An equivalent MI-GBT graph topology for the example in
Fig. 3. Constraints in the ILP ensure that equivalent vertices are used
only once. While our implementation matches the topology of Fig. 6,
the ILP is easier to describe for this topology. Dashed edges are not

strictly necessary (the solution will not include these edges) but are

included for completeness.

i=j.
—logL (vj), i=0, k=0,
Cijk _ —lOg (ptype (k)L(UI))’ l: ’ k7é O’ (26)
—IOgL(Ujh)i), 1750, ]7507
0, j=o.

As before, we may alternatively use dimensionless
track score based on likelihood ratios. In this case, we
have the following:

O’ l = 0, k = 0,

_ logptype (k) s i = O, k 75 0, (27)
Cijk = L(vjlvi . .

—log L((v/_)), i#0, j#0,

0’ ] = 0

Using either Eq. (26) or Eq. (27), we may then ex-
press the ILP as follows:

J = Z Z CijkXijk- (28)

k=0,...K (i.j.k)eAx
xijk €{0,1} V(i j.k) € Ak, k=0,....K, (29)
2: 2: xijp=1 Yo, eVUW, (30)

k=0,...K i:(i, j.k) €A

J:(jik)eA,

Z xijk=0 Yv; e VUW,,
Jiisjk)eAk

k=0,....K. (31)

We seek the solution that minimizes the objective
(28) subject to conditions (29)-(31). Equation (30) en-
sures that all nodes be used exactly once. Equation (31)
ensures that flow balance be achieved in each track node
in each subgraph.

Additional constraints are needed to complete the
ILP formulation. Indeed, in Section III-E we identified
two concerns that must be addressed via appropriate
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constraints. The first is that identity track v; may be tem-
porally nested within track v;,so that both edge variables
X;jk and x j are defined for k =1, ..., K. In this case, we
must ensure that both edge variables (or neither) are set
to unity in subgraph Gy. Furthermore, if both are set to
unity, there must be flow into v; from another node in ad-
dition to v;. This ensures that, in Gy, flow is into v;, from
v; to v; and back, and out of v;. This is captured in the
following constraints:

V(i j k) € Ax,
k=1,...,K,

2

I:(1,i,k)e A\ (j,i, k)

k=1,...,K

(J.i, k) € A = Xiji = Xjik
(32)

(jii,k) e A, vj e W = Xiik = Xijk,

(33)

A second concern is that we must exclude the asso-
ciation of multiple identity tracks in the same scan with
the same kinematic track. This would violate the mod-
eling assumption of at most one detection per target
per scan. This can be achieved with an inequality con-
straint whereby for each identity-sensor scan and each
(relevant) kinematic track at most one edge variable is
unity.

Each identity scan is at a time #,, € t", with ¢* the
sequence of identity-sensor scan times. Let us denote
by W(t,,) the corresponding set of identity (singleton)
tracks. For each kinematic track v; € V, one or both of
two cases apply, depending on whether the end of the
kinematic track temporally precedes or follows the iden-
tity scan at time. Thus, we have

2 2

k=1,...K j:(i,j,k)eAr,v;eW (t)

Xijk <1,
Yv; €V, Vi, € 1",
Xji < 1.
k=1,...K j:(jik)eAr, v, €W (t)
(34)
It is worth emphasizing that the MI-GBT solution is
fully specified by the ILP defined by Egs. (28)-(34). The
graphical illustrations shown in Figs. 6, 8, and 9 are pic-
torial aids, but no not capture the required optimization
constraints.

G. Solution Complexity

It is useful to have an approximate, analytical assess-
ment of the computational complexity associated with
MHT, GBT, and MI-GBT solutions to the multi-INT
problem. Here, we estimate the size of the ILP associated
with these paradigms. We denote by dim(x) the length of
the solution vector in the objective—Eqgs. (13), (21), and
(28), respectively.

Given m sets of |V| tracks, and with |W| identity
types, the GBT problem size is |x| = O(m|V|?), while
the MI-GBT problem size is [x| = O(m|V|*(1 + |[W])).
Both compare favorably to the (track-oriented)
MHT approach, for which problem size is |x| =

O(|V|"*1(1 4 |W|)). The solution time associated
with the ILP is problem size dependent. Empirically, we
observe low-order polynomial times as a function of the
solution vector, typically O(|x|") with small n for MHT
and MI-GBT solutions based on LP relaxation, and
O(|x|?) for the GBT based on MCNF or an equivalent
bipartite matching formulation [34].

The MI-GBT provides a good trade-off with its abil-
ity to exploit object-type information (like MHT) while
maintaining an efficient pairwise-cost formalism (like
GBT). For a given hypothesis depth (n-scan), MHT will
generally outperform MI-GBT. Likewise, for a given
hypothesis depth, GBT will incur lower computational
effort. We anticipate that, in disparate-sensor settings
where kinematic Markovian assumptions are appropri-
ate, MI-GBT will yield a better complexity versus per-
formance operating curve than both MHT (which does
the right thing, at great expense) and GBT (which cannot
exploit type information).

IV. SIMULATION RESULTS

We now explore the performance of MHT and
MI-GBT approaches to multi-INT track fusion. We fo-
cus on a simplified version of the general problem while
including the key challenge that exposes the differences
between the MHT, GBT, and MI-GBT solutions. This
will allow us to gain intuition regarding the relative
strengths of the methods. It will be of interest to conduct
more general MTT performance analysis in subsequent
studies.

We consider a fixed number of targets, with no tar-
get births or deaths. We assume high track-level detec-
tion performance. We simplify the problem further by
assuming equivalent-measurement processing that leads
to single-measurement kinematic tracks. Thus, our prob-
lem may be viewed as one for which we observe a se-
quence of measurement sets, each containing a detection
on all targets, with no false measurements.

We assume that the identity sensor reports twice,
at the start and at the end of the scenario. In the in-
terim, we have a number of kinematic scans, each con-
taining positional measurements on all targets. The iden-
tity sensor includes precise object-type information with
each positional measurement. In general, there are mul-
tiple objects of each type, so the association of mea-
surements from the two identity-sensor scans in not
known.

We consider GBT, MHT, and MI-GBT solutions to
this data-association problem. Ultimately, even for this
simplified problem, one would want to compare GBT,
MHT, and MI-GBT solutions for a common processing
load. Since the computational complexity of MHT grows
significantly as a function of scenario duration, we limit
processing to an n-scan = 0 solution (i.e., no hypothesis
depth) that amounts to GNN processing.
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Fig. 10. GBT processing is more error-prone than MHT in
kinematic association, due to the fundamental path-independence
approximation that degrades kinematic-filtering accuracy. In the 1D
case, GBT tracks never cross. Note that ID associations may violate
type information: target 1 is of type A and target 3 is of type B.

Figs. 10-12 illustrate one realization of 1D target tra-
jectories (black lines), measurement data (black cross
symbols), and GBT, MHT, and MI-GBT solutions. Tar-
get motion is according to our stable, stationary second-
order OU process that generalizes the standard NCV
motion. Indeed, note that the positional spread of the
trajectories remains roughly the same over time; the
same is true in velocity space. Positional measurements
include additive Gaussian noise.

The first and last sensor scans are provided by the ID
sensor. We consider a five-target scenario. Targets 1 and
2 are of type A, targets 3 and 4 are of type B, and target 5
is of type C. The ID sensor does not exhibit object-type
measurement error, but the association of target mea-
surements of the same type is unknown.

It is instructive to consider aspects of the solutions as
illustrated in these figures. Note that the GBT solution
incurs errors when targets cross, since the solution tra-
jectories do not do so. This can be readily understood, as
the GBT reasons over pairwise costs. In the 1D case, it
is costly to associate measurements in such a way as to
alter the relative ordering of the tracks.

The GBT solution cannot exploit ID information ex-
cept when there are sequential ID-sensor scans. Hence,
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Corrective action:
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L MHT| ID measurement
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<
% R Kinematic
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sensor scan number
Fig. 11. MHT performs effective kinematic association but is

ultimately myopic as it cannot exploit ID measurements that are in
the distant future. ID information is part of the track state and, thus,
corrective action is taken when prior association errors are detected.
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Fig. 12. MI-GBT may perform association errors when consistent
with available ID data, but yields solutions that exploit all available
ID measurements.

when there are kinematic-sensor scans between ID-
sensor scans, the association of ID measurements is
error-prone. Unlike the GBT solution, the MHT solu-
tion relies on recursive filtering so that crossing targets
are handled properly in most cases. Corrective action is
taken when the second ID-sensor scan is received. Note
that full corrective active with MHT may not be possi-
ble when kinematic gating disallows sufficiently unlikely
associations.

The MI-GBT solution struggles with multiple target
crossing in the absence of ID data, but it maintains ID
information and is able to deal effectively with single-
crossing events between ID reports. More importantly,
the MI-GBT exploits ID data in performing associations
with the second scan of ID-sensor data. Hence, ID mea-
surement associations do not violate type information,
and this is achieved without the corrective action that
MHT exhibits. For the same computational load, deeper
hypothesis reasoning is possible.

Of course, for sufficiently temporally distant ID mea-
surements, MI-GBT will also require corrective action.
Note also that, when focusing only on the MI-GBT
tracking solution for targets of the same type, no track
crossing occurs. This behavior is consistent with what we
observe in the overall solution with all tracks in the GBT
solution.

Due to the nonunique nature of target-type measure-
ments, some incorrect ID measurement association de-
cisions are performed by MHT and MI-GBT. Figs. 13
and 14 illustrate a scenario for which both MHT and
MI-GBT incorrectly associate some ID measurements,
when these are of the same type. We highlight a track
that starts with a measurement on target 1, and ulti-
mately associates with one on target 2. Note that both
targets are of type A; hence, this error cannot be ex-
cluded.

In all cases, the final tracking solution for all
paradigms (GBT, MHT, and MI-GBT) includes trajec-
tory smoothing based on the forward-backward im-
plementation of the Kalman smoother. This provides
improved localization accuracy that is appropriate for
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Fig. 13. ID measurement association error in MHT processing, due

to common target type (targets 1 and 2).

forensic problems where maintaining small processing
latency is not crucial. When it is, this postprocessing step
may be omitted.

Figs. 15 and 16 provide performance as a function of
the number of kinematic-sensor scans. Note that, with
an increasing number of scans, correct measurement
association decisions become harder, for all solution ap-
proaches. Indeed, the value of temporally distinct iden-
tity measurements is more limited than when temporally
close identity measurements are available. There are at
least two ways that this can be understood. First, knowl-
edge of future location of a target has little bearing on
data-association decisions, when the future time is in the
distant future. Second, there are typically a larger num-
ber of ambiguous object-crossing events over a longer
time horizon, providing many similarly scoring tracking
solutions. The increasing difficulty of the MTT problem
can be seen empirically in the fact that performance un-
der all solution paradigms degrades as a function of the
number of kinematic-sensor scans, as these lack target-
type information.

We compare against a clairvoyant (ideal) algorithm
for which measurement association is known a priori.
We consider both the average track localization error
and the fraction of correct data-association decisions.
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€
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Fig. 14. ID measurement association error in MI-GBT processing,

due to common target type (targets 1 and 2).
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Fig. 15. Positional error of solutions: MI-GBT is best.

Results are based on 100 Monte Carlo realizations for
each scenario duration.

These results on idealized scenarios provide confi-
dence in the significant potential of MI-GBT process-
ing for multi-INT surveillance, even when ID measure-
ment associations are only partially constrained. The full
MI-GBT solution accounts as well for birth/death phe-
nomena and missed detections. A key enhancement rel-
ative to our early work is to relax the unity-flow con-
straint on the number of objects of each type. In so do-
ing, it is crucial to express ID measurements as nodes in
the multilayer graph topology.

V. CONCLUSION

This paper introduces an efficient, generalized GBT
scheme for multi-INT track fusion that yields promis-
ing performance against an MHT baseline. Crucially,
our scheme allows for object identity measurements
via a multilayer graph approach, while exploiting kine-
matic path independence. As such, the approach may be
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Fig. 16. Association accuracy of solutions: MI-GBT is best.
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thought of as a hybrid GBT/MHT approach to data as-
sociation. We allow for an arbitrary number of objects
of each type and achieve scalability via sliding-window
hypothesis resolution as is commonly performed in
MHT.

It is important to emphasize that our proposed
graph-based multisensor fusion algorithm is not fully
general, in the sense that we do not directly handle
an arbitrary number of kinematic and identity sources.
Rather, we rely on upstream processing (see again
Fig. 2) and assume a single (consolidated) kinematic
source and a single (consolidated) identity source. Fur-
ther, we do not consider fusion of temporally over-
lapping kinematic tracks (see again Fig. 1), and we
assume singleton (single-measurement) identity tracks.
Nonetheless, our work offers promising performance
benefits over classical MHT technology in this restricted
setting.

In ongoing work, we are investigating use of the
MI-GBT on scenarios that exhibit move—stop—move tar-
get motion cycles and motion-sensitive kinematic sen-
sors. Additionally, further analysis is needed to address
slowly varying (nonstatic) feature states and noisy fea-
ture measurements.
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