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Estimation of the Conditional
State and Covariance With
Taylor Polynomials

SIMONE SERVADIO
RENATO ZANETTI

A novel estimator is presented that expands the typical state and

covariance update laws of Kalman filters to polynomial updates in the

measurement. The filter employs Taylor series approximations of the

nonlinear dynamic andmeasurement functions.All polynomials (func-

tions approximation, state update, and covariance update) can be se-

lected up to an arbitrary order to trade between filter’s accuracy and

computational time. The performance of the algorithm is tested in nu-

merical simulations.

I. INTRODUCTION

Estimation is the process of inferring the value of a
quantity of interest from indirect, inaccurate, and noisy
observations. When the quantity of interest is the (cur-
rent) state of a dynamic system, the problem is often
referred to as “filtering”: The best estimate is obtained
by “filtering out” the noise from noisy measurements.
The estimate is the output given by an optimal esti-
mator, which is a computational algorithm that pro-
cesses measurements while maximizing a certain perfor-
mance index. The optimal estimator makes the best use
of the data, of the knowledge of the system, and of the
disturbances.

For the well-known linear and Gaussian cases, the
posterior distribution remainsGaussian and theKalman
Filter [21], [22] provides the mechanization to calculate
its mean and covariance matrix. However, most practi-
cal problems are nonlinear in the dynamics and in the
measurement equations, leading to non-Gaussian prob-
ability density functions (PDFs).

Many techniques have been developed to deal with
the nonlinear estimation problem. A simple solution is
based on the linearization of the dynamics andmeasure-
ment equations around the most current estimate. The
Extended Kalman Filter (EKF) [13] algorithm applies
the KFmechanization to the linearized system.Another
well-known technique to account for the system nonlin-
earities is the unscented transformation. The Unscented
Kalman Filter (UKF) [19], [20] is able to better handle
the effects of nonlinearities in the dynamics and in the
measurements and, typically, achieves higher accuracy
and robustness levels when compared to the EKF. The
UKF applies the unscented transformation to achieve a
more accurate approximation of the predictedmean and
covariancematrix.TheUKF is a linear estimator, i.e., the
estimate is a linear function of the current measurement.

The first-order approximation of the EKF can be
extended to higher order Taylor series [10], [13]. Gener-
ally, the higher the order of the Taylor series, the better
the performance of the filter. The Gaussian Second
Order Filter (GSOF) [18] truncates the Taylor series at
second order to better account for the system’s nonlin-
earities. Truncating the Taylor series to order c requires
knowledge of the estimation error’s central moments
up to order 2c in order to calculate the Kalman gain. For
example, the EKF truncates at first order, and it requires
knowledge of the covariance matrices. Consequentially,
the GSOF requires knowledge of the third and forth
central moments of the state distribution. At each
iteration, the GSOF approximates the prior PDF as
Gaussian so that the third-order central moment is zero
and the fourth is easily calculated from the covariance
matrix. The GSOF performs a linear update based on a
second-order approximation of the posterior estimation
error. Linear Gaussian filters exist up to any arbitrary
truncation order of the Taylor series approximation of
the dynamic/measurement functions [34], [35].
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Other linear filters make different types of approxi-
mations, such as Gaussian quadrature (QKF) [3], spher-
ical cubature (CKF) [2], ensemble points (EnKF) [42],
central differences (CDKF) [32], and finite differences
(DDKF) [31].

All of the filters mentioned above are linear estima-
tors, i.e., the estimate is a linear function of the current
measurement. The conditional mean, which is the op-
timal minimum mean square error (MMSE) solution,
is typically some unknown nonlinear function of the
measurement whose exact computation is usually not
feasible. A linear estimator, even when accounting for
the nonlinearities of the measurement function, is typi-
cally outperformed by nonlinear estimators such as the
Gaussian Sum Filter (GSF) [1], [40] or Particle Filters
(PFs) such as Bootstrap PF (BPF) [15],Marginalized PF
(MPF) [33], Auxiliary PF (APF), Unscented PF (UPF)
[44],Gaussian PF (GPF) [16], andMonte Carlo Filter PF
(MCFPF) [29].

Ref. [14] derives the evolution of the conditional
mean, covariance, and higher order moments of a dy-
namic system subject to continuous measurements. To
make the solution practical, the nonlinear dynamic and
measurement equations are approximated with Taylor
series expansions.

Another, less studied, approach to nonlinear fil-
tering is to expand the linear update structure to a
polynomial update function of the measurement. De
Santis et al. [11] propose an augmented state to ob-
tain a polynomial update but preserving the linear
update structure. Their work augments the measure-
ment vector with its square to form a quadratic up-
date [11] and was extended to polynomial updates [8].
Li et al. [23] propose to augment the measurement
vector with uncorrelated nonlinear conversions. Sim-
ilarly to [8] and [11], Liu et al. [26] obtain a non-
linear estimator preserving the linear structure of the
measurement update. The mean square error (MSE)
can be minimized by an optimal selection of the un-
correlated functions [24]. Later, Zhang and Lan [24]
merged with the GSF mathematics [46]. Servadio and
Zanetti [36] also implemented a quadratic update (ex-
tendable to polynomial update of any order) based
on Taylor series expansions. The polynomial update
requires knowledge of high-order central moments,
and [36] carries these moments, exactly like the EKF
carries mean and covariance. The computational de-
mand of carrying higher order central moments (prop-
agating forward in time and updating with measure-
ment data) grows quickly with the truncation order
of the Taylor series, the size of the state vector, and
the order of the polynomial update. Ref. 38 performs
a polynomial update without carrying the higher or-
der central moments and, hence, reduces overall com-
putational cost by approximating non-Gaussian dis-
tributions as polynomial transformation of Gaussian
random variables. In doing so, all high-order cen-
tral moments are easily and efficiently calculated in

a closed form. Consequently, in [38], polynomial up-
dates can be performed much more efficiently than
in [36].

The updatemethodologies presented in [8], [11], [23],
[36], and [38] produce a more precise state estimate than
those produced by a linear state update. This work in-
troduces a higher order update for the covariance ma-
trix as well as for the state update, which results in a
more accurate quantification of the uncertainty associ-
ated with the estimate. In turn, the more accurate uncer-
tainty representation produces a more accurate estima-
tor and, hence, a reduced estimation error.

This article is structured in the following way. First, a
short background section highlights the novel contribu-
tions of the work. This is followed by the development
of the newmethodology and by applications to three nu-
merical examples. Lastly, conclusions are drawn.

II. BACKGROUND

The linear update rule for mean x̂+ and covariance
matrix P+

xx are given by

x̂+ = x̂− + K(ỹ − ŷ−), (1)

P+
xx = P−

xx − KPyyKT , (2)

where K is the Kalman gain, ỹ is the measurement out-
come, ŷ− is the predicted measurement mean, x̂− is the
prior mean, P−

xx is the covariance of the state, and Pyy

is the covariance of the measurement. The above equa-
tions are optimal in anMMSEonly when the prior distri-
bution and themeasurement are jointlyGaussian (which
implies a linear relation between the two). In general, the
MMSE estimate is the conditional mean, an unknown
and typically nonlinear function of the measurement
outcome; Equation (1) is the statistical linear regression
of the conditional mean [25], that is to say, Equation (1)
is the best linear fit of the conditional mean with respect
to a MSE performance index

x̂+ ≈ E

{
x
∣∣∣y = ỹ

}
,

where the approximation holds to first order. Equation
(2), on the other hand, is the total covariance of the esti-
mation error:

P+
xx = E

{
(x − x̂+) (x − x̂+)T

}
,

but it is also the best constant approximation of the con-
ditional covariance of the state given the measurement,
also in an MSE sense.

P+
xx ≈ E

{
(x − E {x}) (x − E {x})T

∣∣∣y = ỹ
}

,

where the approximation holds to zeroth order.
For nonlinear dynamics/measurements, the linear

update equations above are not fully recursive, and pro-
cessing nonlinear measurements as a batch is more ac-
curate than processing them individually [36]. For non-
linear systems, Bayes’ rule can be applied recursively to
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obtain an optimal estimator, that is to say, the quantity
to be calculated recursively is the conditional PDF given
themeasurements outcome.Hence, a linear recursive fil-
ter can be interpreted as an approximated filter where
the distribution of the state given the measurements is
approximately Gaussian with mean x̂+ and covariance
matrix P+

xx.
Experience has shown that the order of the statis-

tical regression approximation of the covariance needs
to be lower than that of the mean in order to ob-
tain good numerical performance of the algorithm. A
zeroth-order covariance approximation, therefore, has
endured as a companion of a linear mean update rule,
but it is also used in higher order update methodolo-
gies [8], [11], [23], [36], [38].Our prior work,HOPUF-�-c
[38], presents a high-order polynomial state update, i.e.,
a higher-than-linear polynomial approximation of the
conditional mean.This article presents a novel higher or-
der polynomial covariance update to better approximate
the conditional covariance than the standard zeroth-
order approach.

A. The Polynomial Estimator

Gaussian filters are linear filters that approximate
the distribution of the state given the measurements as
Gaussian with mean x̂+ and covariance matrix P+

xx. This
is equivalent to approximating the distribution of the
state given the measurements as a linear transformation
of a standard normal. This linear transformation is given
by a shift of x̂+ and a scale of

√
P+
xx.

Our previous work (HOPUF-�-c) expanded this
concept by introducing a filter that approximates the
distribution of the state given the measurements as a
polynomial transformation of standard normal random
variables and uses a higher-than-linear polynomial up-
date function. This work introduces a novel covariance
update technique and uses theHOPUF-�-c state update,
which is summarized here.

Let x be the state of the dynamic system, which is
desired to be estimated, and let y be another random
vector, sampleable, related to x.Estimators are functions
g(y) that infer the unknown value of x based on the
known outcome of y. Polynomial estimators are a subset
of all estimators, which, using the Kronecker operator,
can be written as

g(y) = a + K1y + K2y[2] + K3y[3] + K4y[4] + · · · , (3)

where a is a constant, each Ki is a constant matrix of ap-
propriate dimensions,and each y[i] is calculated using the
Kronecker product

y[i] = y ⊗ y ⊗ y ⊗ · · · . (4)

In order to avoid redundancy, each repeated component
of Equation (4) generated by the Kronecker product is
eliminated, which means that, as an example, only one
term between yiy j and y jyi is kept. It is convenient to

derive the estimator’s constants by working with devia-
tion vectors. Deviation vectors are defined as

dx = x − E {x} , (5)

dy{i} = y[i] − E

{
y[i]

}
. (6)

Deviations have zero mean by construction. The fam-
ily of polynomial estimators defined by Equation (3) is
redefined by adding and subtracting constants, in order
to obtain a new, but theoretically equivalent, polynomial
estimator family

g(y) = a + E {x} + K1(y − E
{
y
}
)

+ K2

(
y[2] − E

{
y[2]

} )

+ K3

(
y[3] − E

{
y[3]

} )
+ · · ·

= a + E {x} + K1dy + K2 dy{2} + K3 dy{3} + · · ·
(7)

= a + E {x} + KdY, (8)

where both the measurement residual with its powers,
dY , and the matrices Ki are stacked:

K = [
K1 K2 K3 . . .

]
, (9)

dY = [
dyT dy{2}T dy{2}T . . .

]T
. (10)

The optimal estimator, in an MMSE sense, satisfies the
orthogonality principle, from which it follows that the
optimal polynomial update estimator becomes

x̂ = E {x} + PxYP−1
YYdY . (11)

Matrices PxY and PYY are the augmented state-
measurement cross-covariance matrix and the aug-
mented measurement covariance matrix, respectively.
These matrices are constructed blockwise by using co-
variancesPxy[ j] andPy[i]y[ j] , for any combination of i and j.
As an example,Py[3]y[4] indicates the covariance between
the third-order measurement vector y[3] and the fourth-
order y[4]. Since deviations have zero mean by construc-
tion, the identities Py[i]y[ j] = Pdy{i}dy{ j} and Pxy[ j] = Pdxdy{ j}

are valid ∀i, j ∈ N0.

B. Differential Algebra

In this work,Gaussian random vectors undergo non-
linear (polynomial) transformations. The methodology
used here to approximate these transformations is dif-
ferential algebra (DA) via theDifferential Algebra Core
Engine (DACE2.0) software program. DA is used as a
tool to implement the polynomial filter. Other approx-
imations of nonlinear transformations are also possible
but not considered here; ref. 23, for example, used the
Unscented Transformation.

The theory of DA has been developed by Martin
Berz in the late 1980s [7]. The DA framework is an alge-
bra of Taylor polynomials.All functions are represented
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through a matrix of coefficients and exponents rather
than the classical representation with an array of float-
ing point (FP) numbers. The DACE2.0 [27] software has
a hard-coded library of the Taylor series expansion of
elementary functions. As a consequence, derivatives are
not computed numerically (e.g., finite differences), but
evaluated directly from the Taylor polynomials. DA of-
fers a way of working in a computer environment where
the algebra of polynomials is endowed of composition
of function, function inversions, explicit system solving,
etc., as in the standard FP arithmetic.

DA has been proven to reduce computational costs
in solving ordinary differential equations (ODEs) [28].
Once the maximum truncation order of the polynomial
is selected,DA creates the Taylor polynomial expansion
of the flow of ODEs as a function of the provided initial
conditions. This approach can replace thousands of in-
tegrations with the computationally faster evaluation of
the Taylor expansion [5]. As a result, the computational
burden reduces considerably [42]. In the filtering prob-
lem,DA techniques have been used for the development
of an efficient mapping of uncertainties [43] and for the
evaluation of high-order moments [4]. Wittig et al. [45]
developed a domain splitting technique that improves
the state propagation when initial uncertainties are large
by creating multiple polynomials.

The main concept of DA is that each function f (x)
can be expressed as a polynomial p(δx), where the new
variable δx is the deviation from the expansion center x̂.
The polynomial p(δx) is the Taylor series expansion of
f (x), centered at x̂, and truncated up to a user-selected
order c.

For a detailed description of DA, its techniques, and
how the DACE2.0 works in a computer environment,
the reader is referred to the references.

III. THE STATE AND COVARIANCE ESTIMATION
FILTER

A new filtering technique, based on a double poly-
nomial estimator, is proposed in the DA framework.
The double nature of the filter refers to the sequen-
tial estimation of the state and the covariance, where, at
each time-step, the same measurement outcome is used
twice to achievematching between the conditioned state
mean and its relative uncertainty spread.

Consider the generic dynamic system described by
the following equations of motion and measurement
equations:

xk+1 = f(xk) + vk, (12)

yk+1 = h(xk+1) + wk+1, (13)

where f(·) is the dynamics function, xk is the
n-dimensional state of the system at time-step k, yk+1

is the m-dimensional measurement vector at time-step
k + 1, and h(·) is the measurement function. The noises

are assumed to be zero-mean Gaussians and uncorre-
lated, such that their distribution is fully described by
the first two moments. For all discrete time indexes i
and j

E

{
viwT

j

}
= 0, (14)

E

{
vivTj

}
= Qiδi j, (15)

E

{
wiwT

j

}
= Riδi j, (16)

where Qi is the process noise autocovariance function,
whileRi is for the measurement noise. The initial condi-
tion of the state of the system is assumed to be Gaussian
as well x0 ∼ N (x̂0,P0); however, for all other time-steps
k > 0, the state distribution will be non-Gaussian due
the nonlinearities in the dynamics.

The main result of this article, the State And Covari-
ance Estimation Filter (SACE-c-η-μ), shares the predic-
tion step with our previous work [38] and introduces a
new update technique. The single distribution used in
SACE-c-η-μ is expanded using Gaussian Multiple Mod-
els (GMMs) theory [30] to create the Multiple Models
State And Covariance Estimation Filter (SACEMM-c-
η-μ).

SACE-c-η-μ is composed of three different parts: the
prediction, the state update, and the covariance update.
The three integers c, η, and μ in SACE-c-η-μ refer to
the tuning parameters of the filter:They are, respectively,
the order of the Taylor polynomial approximation of f(·)
and h(·), (c), the order of the state polynomial update,
(η), and the order of the covariance polynomial update,
(μ).

A. Prediction

At the beginning of each time-step, the state distri-
bution is assumed to be Gaussian xk ∼ N (x̂k,Pk). The
state can, therefore, be initialized in the DA framework
as a first-order polynomial

xk = xk(δxk) = x̂k + Skδxk, (17)

where SkSTk = Pk, and the DA variable δxk = xk − x̂k ex-
presses the deviation from the expansion center, and it
is interpreted as a Gaussian with zero mean and iden-
tity covariance matrix. Therefore, matrix Sk (here cal-
culated through Cholesky Decomposition) scales the
coefficients of the state polynomial and results in the
moments of xk easily calculated from the moments of
N (0, I).

The propagation function is applied directly to the
state polynomial, such that the predicted state vector is

x−
k+1 = x−

k+1(δxk) = f
(
xk(δxk)

)
, (18)

where x−
k+1 indicates the Taylor series expansion of the

dynamics centered at x̂k and truncated at the user-
defined integer order c. Equation (18) is carried out in
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the DA framework. Each component of x−
k+1 is a poly-

nomial map (centered at x̂k) that maps deviations (δxk)
from time-step k to time-step k + 1 and describes how
the state PDF evolves in time. The predicted polynomi-
als are lacking the influence of the process noise. Pro-
cess noise can be mapped in the DA framework with the
same representation reserved for the state of the system.
Thus, a newDA variable δvk, interpreted again as a stan-
dard normal random vector, is introduced:

x−
k+1(δxk, δvk) := x−

k+1(δxk) + Tkδvk, (19)

where vk = Tkδvk and TkTT
k = Qk.

Analogously, the predicted measurement is ex-
pressed as a Taylor polynomial expansion in the DA
framework:

yk+1 = yk+1(δxk, δvk) = h
(
x−
k+1(δxk, δvk)

)
, (20)

where yk+1 is, again, a polynomial centered at x̂k with
maximum order c. In Equation (20), the expansion is
now with respect to both the state deviation vector
(δxk) and the process noise (δvk). The influence of the
measurement noise is added to the polynomials like in
Equation (19). A new DA variable δwk+1 is introduced

yk+1(δxk, δvk, δwk+1) := yk+1(δxk, δvk) + Uk+1δwk+1,

(21)
where wk = Ukδwk and UkUT

k = Rk. Once again, δwk+1

is interpreted as a standard normal random vector.
All the predicted quantities have been calculated,

and they are represented as polynomial functions of
standard random vectors. The number of variables is
2n + m: n deviations map the state behavior, n map the
process noise, and the remaining m map the measure-
ment noise. The Gaussian nature of the random vectors
leads to a fast evaluation of all expectation operations
since, for a Gaussian PDF, central moments can be eas-
ily computed using Isserlis’ formulation [17].

B. The State Polynomial Update

The second part of SACE-c-η-μ is the state polyno-
mial update. After selecting the integer c in the predic-
tion step, the user defines a second integer, η, which se-
lects the order of the polynomial estimator dedicated to
the state of the system.

The polynomial update evaluates the augmented
Kalman gain and for high powers of the measurement
polynomials. Starting from the latter,

y[2]k+1 = yk+1 ⊗ yk+1, (22)

y[i]k+1 = yk+1 ⊗ yk+1 ⊗ . . . (23)

with i = 1, . . . , η, and, once again, the redundant com-
ponents are eliminated, in order to have independent
measurements.

The means of the predicted state polynomials are
now evaluated. Each polynomial undergoes the expec-

Table I
Isserlis’ Moments of Gaussian N (0, 1)

Exponent 0 1 2 3 4 5 6 7 8 ...
Coefficient 1 0 1 0 3 0 15 0 105 ...

tation operator,which, being a linear operator,works di-
rectly on the single monomials of the expansion [34].

x̂− = E
{
x−
k+1

}
. (24)

The deviations have a Gaussian distribution with zero
mean and identity covariance matrix; therefore, the ex-
pected value substitutes the relative Isserlis’ moment in
for each monomial, according to Table I.

For example: E
{
αδx81δx

4
2δx

6
4δv

2
2δw

4
3

} = 4725α. The
predicted means of the measurement polynomials are
similarly evaluated using Equation (24):

ŷk+1 = E
{
yk+1

}
, (25)

ŷ[2]k+1 = E

{
y[2]k+1

}
, (26)

ŷ[i]k+1 = E

{
y[i]k+1

}
, (27)

where, once again, i = 1, . . . , η.
The augmented measurement covariance PYY,[η] is

evaluated blockwise.Thematrix is guaranteed to be non-
singular because redundant rows and columns have been
eliminated. The matrix is symmetric and each block is
evaluated as

Py[i]y[ j] = E

{(
y[i]k+1 − ŷ[i]k+1

)(
y[ j]k+1 − ŷ[ j]k+1

)T
}

, (28)

∀i, j = 1, . . . , η. Every time a polynomial multiplies it-
self, the maximum truncation order of the Taylor series
doubles. For example, the evaluation of Py[5]y[3] applies
the expectation operator to a polynomial with monomi-
als up to order 8c. The augmented state-measurement
cross-covariance matrix PxY,[η] is evaluated blockwise,
and each block is evaluated as

Pxy[i] = E

{
(x−

k+1 − x̂−
k+1)

(
y[i]k+1 − ŷ[i]k+1

)T
}

, (29)

∀i = 1, . . . , η. The subscript [η] specifies that the covari-
ance matrices are created with measurement powers up
to order η. From these covariances, it is now possible to
evaluate the augmented Kalman gain

K = PxY,[η]P−1
YY,[η]. (30)

Denote with ỹk+1 the numerical outcome of the ran-
dom vector yk+1, its powers are evaluated using the
Kronecker product

ỹ[2]k+1 = ỹk+1 ⊗ ỹk+1, (31)

ỹ[i]k+1 = ỹk+1 ⊗ ỹk+1 ⊗ · · · (32)
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with i = 1, . . . , η, and, once again, the redundant com-
ponents are eliminated. The polynomial update exploits
the influence of high powers from the measurement out-
come. The measurement residual is developed to create
the augmented innovation vector

dỸ(δxk, δvk, δwk+1) =

⎡
⎢⎢⎣
ỹk+1 − yk+1(δxk, δvk, δwk+1)
ỹ[2]k+1 − y[2]k+1(δxk, δvk, δwk+1)

. . .

ỹ[η]k+1 − y[η]k+1(δxk, δvk, δwk+1)

⎤
⎥⎥⎦ .

(33)
The updated distribution (polynomial) of the state is
given by

x+
k+1(δxk, δvk, δwk+1)

= x−
k+1(δxk, δvk) + KdỸ(δxk, δvk, δwk+1), (34)

and the posterior estimate is its mean

x̂+
k+1 = E

{
x+
k+1(δxk, δvk, δwk+1)

}
(35)

evaluated, through Isserlis’s moments, monomial by
monomial using Table I.

Equation (34) shows that the state polynomials are a
function of the three different deviations: the state devi-
ation, the process noise,and themeasurement noise.Fur-
thermore, the new order of the polynomial is increased
by a factor η, dictated by the order of the polynomial
update. If the order of the polynomial approximation of
the prior distribution (x−

k+1(δxk, δvk)) is c, then the order
of the posterior polynomial (x+

k+1(δxk, δvk, δwk+1)) is ηc.
The higher the polynomial order, the higher the number
of moments to be calculated by Table I, which leads to a
higher computational burden.

C. The Covariance Polynomial Update

The third, and last, part of SACE-c-η-μ is the co-
variance polynomial update. After having estimated the
state of the system, SACE-c-η-μ applies a second poly-
nomial estimator to identify the value of the state covari-
ance conditioned to the measurements. Therefore, the
user defines one last integer parameter,μ, that specifies
the order of the covariance polynomial update. Unlike
previous tuning parameters, μ cannot be freely chosen,
but it has to respect the inequalityμ < η.The covariance
cannot have an higher update order than the state.

The covariance matrix is obtained as

Pxx,k+1 = E
{
(x+

k+1 − x̂+
k+1)(x

+
k+1 − x̂+

k+1)
T}

. (36)

This value shows the average spread of the posterior dis-
tribution among all different possible outcomes, ỹ, of the
random variable y.Equation (36) is the equivalent of the
classical covariance update formulation, Equation (2),
that is used in the most common filters such as EKF,
UKF, QKF, CBF, Central Difference Filter, and GSOF.
Therefore, even if correct, using the average error co-
variance does not extract all the possible information
from the measurement outcome. Similar to the polyno-

mial formulation for estimating the state presented in
Equation (7), Equation (36) can be seen as a zeroth-
order polynomial estimator of the covariance matrix.

A new approach is, therefore, presented in which the
estimate of the covariance is performed to order higher
than zero. Define a polynomial vector, ρk+1, as the co-
variance polynomial

ρ−
k+1(δxk, δvk, δwk+1) = (x+

k+1 − x̂+
k+1) ⊗ (x+

k+1 − x̂+
k+1),
(37)

where, in order to reduce the computational burden,
the redundant terms of the symmetric covariance ma-
trix have been eliminated, e.g., the upper diagonal terms
are removed. The covariance polynomial maximum or-
der is 2ηc, being the square of the posterior distribution.
The mean of ρk+1 is exactly the vectorized version of the
covariance matrix expressed in Equation (36):

ρ̂−
k+1 = E

{
ρ−
k+1(δxk, δvk, δwk+1)

}
, (38)

= stack(Pxx,k+1), (39)

where the stack() operator indicates the vectorization of
a matrix, performed by stacking columns on top of each
other.The covariance update is treated in the sameman-
ner as the state vector: adding to a known prior a poly-
nomial function of the measurement outcome ỹk+1. This
second polynomial update provides an updated covari-
ance value that better represents the state estimate’s un-
certainty.

The starting point is the already computed aug-
mented measurement covariance matrix PYY,[μ]. The
constrain μ < η makes PYY,[μ] a subset of PYY,[η], ob-
tained by selecting the first μ rows and columns. The
cross-covariance matrix PρY,[μ] is evaluated block-wise:

PρY,[μ] = [
Pρy Pρy[2] Pρy[3] . . .

]
, (40)

similarly to PxY,[η]. Each block is obtained as

Pρy[i] = E

{
(ρ−

k+1 − ρ̂−
k+1)

(
y[i]k+1 − ŷ[i]k+1

)T
}

(41)

with i = 1, . . . , μ. The Kalman gain associated with the
covariance correction is calculated as

G = PρY,[μ]P−1
YY,[μ]. (42)

The covariance is updated to its posterior estimate as

ρ̂+
k+1 = ρ̂−

k+1 + G

⎡
⎢⎢⎣
ỹk+1 − ŷk+1

ỹ[2]k+1 − ŷ[2]k+1
. . .

ỹ[μ]k+1 − ŷ[μ]k+1

⎤
⎥⎥⎦ , (43)

where the influence of the measurement is weighted by
the augmented Kalman gain. Before starting the next it-
eration, vector ρ̂+

k+1 is brought back to its matrix formu-
lation

P̂xx,k+1 = matrix(ρ̂+
k+1), (44)

where the matrix() operator is the inverse of the stack()
operator.
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The updated posterior distribution can be approxi-
mated as Gaussian with mean x̂+

k+1 and covariance ma-
trix P̂xx,k+1 to start the next iteration fromEquation (17),
where the DA variables related to the noises are dis-
carded and a new state deviation vector is initialized.

SACE-c-η-μ contains three tuning parameters to en-
hance the performance of classic estimators. In fact,
SACE-1-1-0 reduces to the EKF, and SACE-2-1-0 is the
GSOF. The polynomial estimator better weights the in-
formation from the measurement by computing high-
order central moments. The increase in accuracy is paid
by an increase in computational effort, which practically
limits the filter’s order selection. The highest polyno-
mial order the filter has to compute (in the evaluation
of Pρy[μ] ) is (2η + μ)c.

The computational time required by the filter de-
pends on the selection of its three tuning parameters and
on the dimension of the state vector. SACE-c-η-μ is not
suitable for extremely large systems because of the expo-
nential grow in the number of monomials in the Taylor
expansion [9].An in-depth analysis of the computational
time of filters developed in the DACE2.0 framework is
presented in [12]. The reference portraits an exhaustive
analysis of the execution time on the BeagleBone Black
(BBB) Single Board Computer, with particular focus on
the duty cycles of filter execution on BBB and its depen-
dency on the Taylor truncation order.

IV. THE MULTIPLE MODELS SPACE AND
COVARIANCE ESTIMATION FILTER

SACE-c-η-μ approximates the time propagation of
the state with one single polynomial representation of
the flow. However, as the Taylor polynomial series gets
farther away from the expansion center, it becomes less
accurate. Therefore, when the initial uncertainties of the
state distribution are extremely large, a single polyno-
mial map may not be sufficient to truthfully describe the
predicted PDF [45]. Splitting the initial uncertainties in
multiple (smaller) subdomains aids the filter in reaching
convergence. Thus, a second filter called SACEMM-c-
η-μ merges SACE-c-η-μ with the GMM formulation. In
the DA framework, multiple models translate into mul-
tiple polynomials.

A. Initialization

The initial state distribution is assumed to be Gaus-
sian x0 ∼ N (x̂0,P0). The initialization of the models fol-
lows an analogy with the unscented transformation [20].
Therefore, the initial domain is divided into θ = 2n + 1
models, where n is the number of states. Each ith model
is aGaussian withmean x̂0,{i} and covarianceP0,{i}.Being
symmetric, the state covariancematrix can be elaborated
into its eigenvalue decomposition

P0 = VDVT , (45)

where V is the matrix of eigenvectors that describes the
orientation of the uncertainty ellipsoids, and the diago-
nal matrix of eigenvalues D describes the magnitude of
the uncertainties. The mean of each Gaussian kernel is
selected as

x̂0,{0} = x̂0, (46)

x̂0,{ j} = x̂0 + VD j, j = 1, . . . ,n, (47)

x̂0,{ j} = x̂0 + VD j−n, j = n+ 1, . . . , 2n, (48)

where D j indicates the jth column of the matrix. The
centers of the models lie on the principal axes and their
initial weights are proportional to their probability with
respect to the initial distribution

ω0,{i} = (2π )−n/2

W0
√
detP0

exp
(

−1
2
(x̂0,{i} − x̂0)

T P−1
0 (x̂0,{i} − x̂0)

)
, (49)

W0 =
θ−1∑
i=0

ω0,{i}, (50)

where W0 normalizes the weights such that their sum is
unity. The models are assumed to share the same covari-
ance, and they all have the same initial level of uncer-
tainty

P0,{ j} = P0 + x0xT0 −
θ−1∑
i=0

ω0,{i}x0,{i}xT0,{i} (51)

with j = 0, . . . , θ − 1. Therefore, at the beginning of
the first iteration, the initial Gaussian distribution has
been divided into θ smaller Gaussian kernels x0,{i} ∼
N (x̂0,{i},P0,{i}) with the same covariance matrix and
means on the principal axes, selected as sigma points
from the unscented transformation.

B. Prediction

The models have been initialized as Gaussian ker-
nels. SACEMM-c-η-μ applies SACE-c-η-μ on each ker-
nel like it were operating by its own. As a consequence,
θ different polynomials are created in the DA frame-
works, and θ polynomial maps of the flow describe the
time propagation of the state.

Pk,{i} = Sk,{i}STk,{i}, (52)

δxk,{i} = xk,{i} − x̂k,{i}, (53)

xk,{i} = xk,{i}(δxk,{i}) = x̂k,{i} + Sk,{i}δxk,{i}, (54)

x−
k+1,{i} = x−

k+1,{i}(δxk,{i}) = f
(
xk,{i}(δxk,{i})

)
, (55)

with i = 0, . . . , θ − 1. Multiple Taylor series expansions
improve the approximation accuracy of the polynomial
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maps since, at the boundaries, deviations are closer to
their relative centers. Following SACE-c-η-μ for each
model, the process noise is mapped on each polynomial
expansion:

vk,{i} = Tkδvk,{i}, (56)

x−
k+1,{i}(δxk,{i}, δvk,{i}) := x−

k+1,{i}(δxk,{i}) + Tkδvk,{i},
(57)

and a measurement polynomial is evaluated for each
kernel:

wk+1,{i} = Uk+1δwk+1,{i}, (58)

yk+1,{i} = yk+1,{i}(δxk,{i}, δvk,{i}),

= h
(
x−
k+1,{i}(δxk,{i}, δvk,{i})

)
. (59)

Measurement noise is added in the DA framework

yk+1,{i}(δxk,{i}, δvk,{i}, δwk+1,{i}) :=
yk+1,{i}(δxk,{i}, δvk,{i}) + Uk+1δwk+1,{i} (60)

such that the prediction step is completed for eachGaus-
sian kernel.

C. The State and Covariance Polynomial Update

The prediction step has been exploited by the intro-
duction of multiple polynomials. In the update step, each
kernel undergoes the polynomial update for the state
and for the covariance described by SACE-c-η-μ.There-
fore, after having selected η and μ as the orders for the
polynomial estimators, the state posterior estimate and
the conditional covariance of each model are evaluated
as

x+
k+1,{i}(δxk,{i}, δvk,{i}, δwk+1,{i}) = x−

k+1,{i} + K{i}dỸ{i},
(61)

x̂+
k+1,{i} = E

{
x+
k+1,{i}(δxk,{i}, δvk,{i}, δwk+1,{i}

}
, (62)

and

ρ̂+
k+1,{i} = ρ̂−

k+1,{i} + G{i}

⎡
⎢⎢⎢⎣
ỹk+1,{i} − ŷk+1,{i}
ỹ[2]k+1,{i} − ŷ[2]k+1,{i}

. . .

ỹ[μ]k+1,{i} − ŷ[μ]k+1,{i}

⎤
⎥⎥⎥⎦ , (63)

P̂xx,k+1,{i} = matrix(ρ̂+
k+1,{i}), (64)

with i = 0, . . . , θ − 1. Every Kalman gain and expec-
tation has been calculated according to the polynomial
estimator theory and using Table I, since each deviation
is interpreted as a standard normal random vector.

The influence of each ith Gaussian to the poste-
rior PDF needs to be updated as well. The posterior
distribution of the probability of each Gaussian given
the measurements can be evaluated using Bayes’ rule.
Therefore, the updated weight of each model is propor-
tional to its measurement likelihood. Let us define with

P(yk+1|i,Yk) the probability of ỹk+1 to be the outcome
from the ith Gaussian:

P(ỹk+1|i,Yk) = (2π )−m/2√
detPyy,{i}

exp
(

−1
2
(ỹk+1 − ŷk+1,{i})P−1

yy,{i} (ỹk+1 − ŷk+1,{i})
)

,

(65)

where Yk indicates all the measurement realizations up
to time-step k.Theweight update formulation is derived,
for the ith kernel, as

ωk+1,{i} = P(i|Yk+1)

= P(i|ỹk+1,Yk)

= P(i, ỹk+1|Yk)
P(ỹk+1|Yk)

= P(i, ỹk+1|Yk)∑θ−1
j=0 P( j, ỹk+1|Yk)

= P(ỹk+1|i,Yk)P(i|Yk)∑θ−1
j=0 P( j, ỹk+1|Yk)

= P(ỹk+1|i,Yk)∑θ−1
j=0 ωk,{ j}P(ỹk+1| j,Yk)

ωk,{i}, (66)

where the denominator normalizes the weights such that
they sum to unity. Equation (66) is recursive and modi-
fies the importance of each model based on how likeli-
hood it could have generated themeasurement outcome.

The filtering algorithm has ended, and it can start the
following iteration from x̂+

k+1,{i}, P̂xx,k+1,{i}, andωk+1,{i} for
eachmodel.However, theweighted state estimate, x̄, and
covariance, P̄, are calculated for downstream users, and
they are used to assess the performance of the filtering
technique.

x̄ =
θ∑
i=0

ωk+1,{i}x̂+
k+1,{i}, (67)

P̄ = −x̄x̄T +
θ∑
i=0

ωk+1,{i}
(
P̂xx,k+1,{i} + x̂+

k+1,{i}x̂
+T
k+1,{i}

)
.

(68)

Once again, for basic parameters, SACEMM-c-η-μ
reduces towell-known filters: In fact,picking SACEMM-
1-1-0 reduces to the GSF. The computational complex-
ity of SACEMM-c-η-μ is approximately θ times bigger
when compared to SACE-c-η-μ. Therefore, it is advised
to operate the multiple-model technique when the ini-
tial state uncertainties are particularly large, or when the
time-step is long enough that one polynomial approxi-
mation is not sufficient to adequately represent the flow
of the dynamics. Therefore, for problems with high ini-
tial uncertainty,SACEMM-c-η-μ can be used for the first
few iteration steps and then replaced with SACE-c-η-μ
once the sate error covariance has decreased.
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V. NUMERICAL EXAMPLES

The proposed filtering techniques have been applied
to three different scenarios. First, a scalar application
gives a visual representation of how the new update al-
gorithm works and highlights the innovative features as
compared to other estimators. The second problem con-
sists of a tracking application where the system under-
goes the highly nonlinear dynamics of a Lorenz96 sys-
tem. The third application uses Lorenz63 dynamics to
underline the benefits of the multiple model filtering
technique.

A. Scalar Problem

A simple scalar problem is presented here to high-
light the improvements of the new filtering technique
by estimating the conditional covariance. It has already
been proven that high-order polynomial estimators are a
better approximation of the true MMSE [38]. However,

the presented example underlines thematching between
state and covariance for each different realization of the
measurement.

Define a normal prior state distribution x ∼
N (1, 0.02) and a measurement

y = 1/x+ ν, (69)

where ν ∼ N (0, 0.003) is independent of x and repre-
sents the measurement noise.

Fig. 1 shows the true joint distribution of x and y rep-
resented using 105 points (gray dots in the figure). The
figure compares SACE-c-η-μ and SACEMM-c-η-μ with
a few common estimators: the EKF, the UKF, the GSF,
the Iterated Extended Kalamn Filter (IEKF) [6], the PF,
and the high-order EKF (DAHO-k) [43]. The first row
of graphs (EKF,UKF,DAHO-3) contains linear estima-
tors; therefore, their representation on the (x, y) plane
is a straight line, shown in red. The slope of the red line
is the Kalman gain, whose optimal value is PxyP−1

yy . The
different slopes shown by the different linear estimators

Fig. 1. Comparison among different estimators. Posterior distribution (gray), the estimator functions (red), and their confidence levels (green).
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are due to the different approximations each linear fil-
ter employs to evaluate the moments. The EKF applies
basic linearization (Jacobians), the UKF uses the un-
scented transformation, and DAHO-3 uses Taylor poly-
nomials up to the third order. The green lines depict
the filter’s own assessment of the estimation error un-
certainty as a ±3σ boundary. The different evaluations
of the moments lead to different values on the estima-
tion of the variance, as it follows Equation (2).The green
lines share the same slope of the corresponding red line:
They are just translated left (and right) by 3σ . These lin-
ear filters estimate the same uncertainty level regardless
of the measurement outcome, and the predicted covari-
ance value is the mean among all the possible different
realizations.

The second row of graphs in Fig. 1 shows nonlinear
estimators. The GSF has been implemented with three
models, which allows the estimator function, red line, to
follow the curved shape of the posterior distribution.
However, when the likelihood of one model becomes
predominant with respect to the others, theGSF behaves
similarly to the EKF: This aspect is mostly evident near
the tails of the distribution. The estimated covariance
of the GSF is a function of the measurement because it
is evaluated as a weighted mean among all the models,
whose importance weight is based on their likelihood.
However, the ±3σ green lines show the same problems
of linear estimators: The lines are able to change slope
when the models have approximately the same weight;
otherwise, they are straight. Furthermore, since the GSF
can be intended as multiple EKFs with reduced subdo-
mains, the filter shows the same behavior of the linear es-
timator at the edges of the posterior PDF.The IEKF per-
forms multiple updates to repeatedly calculate the mea-
surement Jacobian each time linearizing with respect to
the most current estimate. The IEKF minimizes a non-
linear least-squares performance index that, for appro-
priate probability distributions functions, approximates
the maximum a posteriori (MAP) estimate. As such, the
IEKF is a nonlinear estimator,and its red line follows the
bend of the posterior distribution, setting on the most
likely value of x for each measurement outcome y. The
±3σ green lines correctly bound the distribution; how-
ever, the IEKF is not necessary an unbiased filter, and
choosing the peak of the posterior distribution does not
necessarily minimize the MSE.Hence, the IEKF’s MSE
is often larger than filters based on the MMSE principle
[37]. The third nonlinear estimator presented in Fig. 1
is the PF. PFs are accurate nonlinear estimators that use
an ensemble of weighted particles to calculate the state
estimate.Theweight of each particle depends on itsmea-
surement likelihood.Both the state estimate and the pre-
dicted error covariance are (nonlinear) functions of the
measurements. The graph shows that the PF estimates
do not form well-defined lines, but the state and covari-
ance estimate values depend on the randomness of the
data. In other words, while in the EKF the state esti-
mates from two separate updates with the same mea-

surement outcome give exactly the same value, two PF
estimates depend on the randomness of the initial en-
semble used to generate them. Consequently, the green
and red “lines” of the PF become thicker while moving
towards the tails of the posterior distribution.

In the third row, SACE-3-5-2 and SACEMM-3-5-
2 are reported. The fifth-order polynomial estimator is
able to follow the curved shape of the joint distribu-
tion, and it accurately approximates the true MMSE.
The optimal MMSE is the conditional mean, which vi-
sually is the line that divides in half the distribution of
y, as horizontal spread of points, for each value of x.
Therefore, while EKF, UKF, and DAHO-3 can be in-
terpreted as different linear approximations of the true
MMSE,SACE-3-5-2 represents a fifth-order approxima-
tion, which shows a more accurate result. By increas-
ing the estimator order η to infinity, SACE-c-η-μ would
asymptotically reach the true MMSE. The green lines
related to SACE-3-5-2 show how the uncertainty level
has become a (nonlinear) function of the measurement.
The ±3σ boundary increases and tightens depending
on the horizontal spread of samples around the estima-
tor function. For example, when the current measure-
ment is y = 1, SACE-3-5-2 gives its estimate with a
level of uncertainty that matches the spread of the gray
points on the line y = 1. When the sensor gives y = 2,
SACE-3-5-2 outputs a level of confidence in its estimate
higher than in the previous case, since the spread of the
gray samples around its estimate at y = 2 is tighter.
Therefore, the estimated covariance of the filter is a func-
tion of the measurement, and the performance improves
drastically because the uncertainty level always matches
the estimate, providing a more reliable outcome. There
appear to be no influential benefits in applying the
multiple model polynomial estimator: SACEMM-3-5-2
behaves similarly to its single-model counterpart and
shares the same features.However, at the tails of the dis-
tribution,SACEMM-3-5-2 estimated conditional covari-
ance better follows the distribution of the samples.

The accuracy level reached by each filter is com-
pared in Fig. 2, where the results of a RMSE analysis is
reported.

RMSE =

√√√√∑Nsamples

i=1 (xi − x̂+
i )

2

Nsamples
. (70)

The RMSE of each estimator is evaluated using the
entire set of 105 points. The bars show that SACE-3-5-2
is the most accurate filter, while the linear estimators
are the least. However, a more precise approximation
of the measurement equation leads to a smaller RMSE
and to a more precise estimate, as proven by DAHO-3
(third-order Taylor polynomial) being the most accurate
among the other linear estimators. The IEKF shares the
same accuracy level as DAHO-3,while the other nonlin-
ear estimators have lower RMSE. Two PF implementa-
tions are shown with different numbers of particles: 103
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Fig. 2. Comparison of RMSE and computational time among different estimators.

and 104. It has error levels comparable with SACE-3-5-2,
and the PF with 104 particles has a heavier computa-
tional burden. Fig. 2 reports, in orange, the average GPU
time of each estimator, evaluated among all the 105 runs
shown in Fig.1.As expected,PF-1e4 has the highest com-
putational time, while linear estimators have the lowest.
SACE-3-5-2 achieves the best accuracy levels compara-
ble to sample-based filters in a shorter amount of time,
although the performance of all nonlinear filters is very
similar in this simple motivating example.

The proposed scalar problem shows no significant
difference between SACE-c-η-μ and SACEMM-c-η-μ.
Let us increase the prior uncertainty level to x ∼
N (1, 0.03) in order to underline the benefits of having
multiple models. Fig. 3 shows the estimator function and
confidence level of the two filters, along with the joint
distribution. SACE-3-5-2 outputs unphysical results for
the predicted conditional covariance of the state: a neg-
ative value of σ 2. The initial prior uncertainties are ex-
cessively large to allow the filter to work properly. On
the left tail of the join distribution, the variance becomes
negative and that is represented by the green lines over-
lapping the red one, to show that the filtering algorithm is
not functioning correctly. SACEMM-3-5-2, on the other
hand, has no issues in estimating correctly both the state
and the covariance for all possible outcomes of the mea-
surement.The green lines bound the samples of the joint
distribution narrowing and widening as needed.The cor-
rect result is connected to the reduced initial covariance
associated with eachmodel,which increases the filter ro-
bustness and performance.

The proposed problem underlines a couple of char-
acteristics of the proposed algorithms. Unlike the linear
and Gaussian cases, the conditional covariance and the
estimation error covariance are different. Linear filters
employ the estimation error covariance,which expresses
the average spread of the estimation error over all pos-
sible measurement realizations. This is a good metric,
but once a measurement is actually available to process,
the covariance conditioned on the actual measurement
outcome is a more informative quantity, because it pro-

vides the spread of the estimation error for the actual
value of y. In fact, the conditional covariance is a (non-
linear) function of the measurement whose evaluation is
usually not feasible. SACE-c-η-μ and SACEMM-c-η-μ
use a polynomial estimator to approximate the function,
achieving better results with respect to filters that do not.

B. Lorenz96 System

The performance of the proposed filter is tested on a
Lorenz96 example [30], where the state dynamics are

dxi(t)
dt

= xi−1(t)(xi+1(t) − xi−2(t)) − xi(t) + F + νi(t),

(71)

with i = 1, . . . , 4, since x(t) is selected to be
four-dimensional. The following conventions are used:
x−1(t) = xn−1(t), x0(t) = xn(t), and x1(t) = xn+1(t).
The term F is a constant external force with value cho-
sen equal to 8, since it introduces a chaotic behavior in
the system. The initial condition is assumed to be Gaus-
sian, with mean x̂ = [

F F F + 0.01 F
]T and diago-

nal covariance matrix, with the same standard deviation
for each component of the state: σx = 10−3. The pro-
cess noise is assumed to be Gaussian and uncorrelated
among states, with known standard deviation σν = 10−3.
The dynamics are propagated at 2 Hz for a total of 20
s. The measurements are obtained at each time-step ac-
cording to the following model:

yk = Hx(tk) + μk, Hi, j =
{
1 j = 2i− 1
0 otherwise (72)

with i = {1, 2} and j = {1, 2, 3, 4}. In other words, the
sensors observe the components of the state with odd in-
dices. Measurement noises are assumed to be Gaussian
and uncorrelated within each other and with the process
noise. The standard deviation is selected as σμ = 0.5:
This value is particularly high, and filters based on linear
estimators are not able to track the state of the system
and achieve convergence [38].
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Fig. 3. SACE-3-5-2 versus SACEMM-3-5-2. Posterior distribution
(gray), the estimator functions (red), and their confidence levels

(green).

Fig. 4 shows the Monte Carlo analysis results per-
formed with SACE-2-3-2 on the presented application.
The figure shows, for each ith component of the state,
the estimation error of each realization (gray lines), cal-
culated as

ε j,i = x j,i − x̂ j,i, (73)

for each jth time-step.A total of 100 realizations are re-
ported.Fig. 4 describes the error means, in black, and the
error standard deviations, as 3σ values, in blue.The black
lines show that SACE-c-η-μ is an unbiased filter, as ex-
pected from the theory of MMSE estimation. The pre-
dicted error standard deviation, continuous blue line, is
evaluated directly from the updated covariance matrix,
by taking the square root of the diagonal terms. The ef-
fective performance of the filter is assessed by the sam-
ple standard deviation of the Monte Carlo estimation
errors, dashed blue lines. At each time-step, the actual
error covariance of the filter is evaluated by working di-
rectly on the samples. The consistency of SACE-2-3-2 is
established by the overlapping of the dashed and contin-

Fig. 4. Monte Carlo performance analysis with SACE-2-3-2: 100
runs.

uous blue lines, which proves that the filter can correctly
predict its own uncertainty levels.

The performance comparison among different filters
is shown in Fig. 5 through another Monte Carlo analysis
conducted with 100 runs. The figure shows, for each fil-
ter, the comparison between the effective and predicted
error covariance. The continuous lines represent the fil-
ter’s own estimate of the error standard deviation, cal-
culated directly from the updated covariance matrix as
the square root of its trace:

σ̄ =
√
tr(P̂xx). (74)
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Fig. 5. Lorenz96: covariance comparison among different filters.

The dashed lines represent the effective error standard
deviation derived from theMonte Carlo analysis.A con-
sistent filter has the matching between its dashed and
continuous lines,meaning that the estimated uncertainty
level reflects the actual error standard deviation.The top
graph, in Fig. 5 shows how linear estimators, the EKF,
UKF,andDAHO-2,diverge (and break down)while try-
ing to track the state of the system. The measurement
noise level is excessively large, and a linear dependence
on the measurement outcome is not sufficient to achieve
a correct estimate. The EKF lines also represent the be-
havior of the IEKF: Since the measurement is a linear
measurement, the IEKF reduces to the EKF. The UKF
and DAHO-2 use, respectively, the unscented transfor-
mation and second-order Taylor polynomial to improve
the prediction step of the filter and have a more accu-
rate propagated state prior distribution. However, the
update step is still linear and highly influenced by the
noise standard deviation that prevents the evaluation of
a reliable Kalman gain. The polynomial estimator better
weights the information from the measurements using
high-order moments and it achieves convergence and
consistency. Therefore, SACE-2-3-0, in blue, and SACE-
2-3-2, in red, correctly estimate the state of the sys-
tem along the whole simulation. The bottom graph in
Fig. 5 zooms in on the performance of SACE-c-η-μ for
the two different sets of parameters. SACE-2-3-0 shows
a filter whose estimate is a polynomial function of the
measurement, and its estimated covariance is evaluated
as a mean among all possible resolutions; it is not in-
fluenced by the measurement outcome. SACE-2-3-2, on
the other hand, improves accuracy by estimating the co-
variance, giving it the same importance reserved for the
state. Thus, the red lines settle below the blue ones for

the whole simulation, since the predicted error standard
deviation better matches the conditional mean.

C. Lorenz63 System

The performance of the proposed algorithms is also
tested on a Lorenz63 application [30], [41], a challenging
nonlinear system without process noise. The absence of
process noise causes impoverishments in PFs, typically
resulting in unsatisfactory performance. The state of the
system undergoes the following dynamics:

dx1(t)
dt

= α(x2(t) − x1(t)), (75)

dx2(t)
dt

= x1(t)(γ − x3(t)) − x2(t), (76)

dx3(t)
dt

= x1(t)x2(t) − βx3(t), (77)

where α = 10, β = 8/3, and γ = 28. For this selection
of parameters, the Lorenz system has chaotic solutions.
Almost all initial points will tend to the invariant set,
the Lorenz attractor. In the presented application, the
initial condition is assumed to be Gaussian with mean
x̂ = [

10 10 10
]T and diagonal covariance matrix, with

the same standard deviation for each component of the
state: σx = 2.5. The state is integrated in time at 30 Hz,
with observations taken at each time-step. The measure-
mentmodel consists of the range of the state from origin

yk =
√
x1(tk)2 + x2(tk)2 + x3(tk)2 + μk, (78)

where measurement noise is assumed to be Gaussian
with zero mean and standard deviation σμ = 1.

Fig. 6 shows, on the top, one of the trajectories de-
scribed by the state of the system, in its three compo-
nents. The Lorenz attractor has two main lobes symmet-
ric with respect to the x3 axis: The resulting pathway has
been labeled a “butterfly”shape.AMonteCarlo analysis
with 1000 realizations with SACEMM-2-5-2 is reported
at the bottom of Fig. 6. For each ith component of the
state, the estimation error of each realization is calcu-
lated according to Equation (73), and reported in gray.
Analogously with the previous application, the contin-
uous blue lines represent the predicted error standard
deviations, as 3σ values, of each component, while the
dashed blue lines are the effective error standard devi-
ations, again as 3σ values, calculated directly from the
Monte Carlo realizations at each time-step.The overlap-
ping between the dashed and the continuous lines indi-
cates that SACEMM-2-3-2 is a consistent filter able to
correctly estimate its own uncertainties. The black lines
are the error means, and they prove the unbiased nature
of the proposed filtering technique, as expected from the
MMSE theory.

The performance of the filters have been assessed
through a covariance comparison carried out with mul-
tiple Monte Carlo analyses, each performed with 1000
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Fig. 6. Trajectory and SACEMM-2-3-2 Monte Carlo analysis results:
1000 runs.

runs. Fig. 7 reports, for each filter, the effective and the
predicted error standard deviations. As shown in previ-
ous analysis, the dashed lines represent the actual un-
certainty level of the filter, while the continuous lines
are the filter’s own uncertainty estimate, evaluated ac-
cording to Equation (74). Fig. 7 reports SACE-c-η-μ
and SACEMM-c-η-μ with different sets of parameters.
For the basic selection of SACEMM-1-1-0, the filter re-
duces to the GSF, where the dynamics are linearized
around the current center of each model, and the up-
date is a linear estimator. The GSF is reported with
black lines, and it fails to estimate the state of the sys-
tem. The effective covariance indicates divergence and
goes out of scale with respect to the predicted standard
deviation.

The state of the system is also estimated with a 104

particles BPF, shown in orange, and the IEKF.The IEKF
diverges rapidly and is not reported in the figure since
the errors quickly reach out-of-scale large values. The
linearization of the dynamics employed by the IEKF
is not sufficient to correctly propagate the state covari-

Fig. 7. Lorenz63: covariance comparison and time analysis among
different filters.

ance forward in time. The divergence of the IEKFmight
be connected to the poor time propagation. However,
this issue might be alleviated by using the Levenberg–
Marquardt algorithm [39]. The BPF performs better
than the GSF but shows convergency problems, and it
is not able to achieve an accurate estimate of the state.
TheBPF has issues due to the lack of process noise in the
dynamics.After resampling, the propagated particles are
not spread enough to be an appropriate representation
of the prior uncertainty in order to accurately perform
the measurement update.

SACE-c-η-μ is analyzed with the traditional zeroth-
order covariance estimation, SACE-2-5-0 shown in
green, and with a second-order covariance polynomial
estimator, SACE-2-5-2 in blue. The two filters behave
similarly: They both show convergence with consistency
for the first half of the simulation, and they diverge for
the remaining half. At time-step t = 2.2 s, the state of
the system is near the origin, in between the two lobes
of the Lorenz attractor. This point is critical because,
due to uncertainty, the estimated state may select the
incorrect lobe, while the true state follows the other.
The measurement model, consisting solely of the range,
gives no beneficial information regarding the lobe se-
lection: Thus, the correction terms in the update step
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do not help tracking the state along the correct path.
Consequently, in some realizations of the Monte Carlo
analysis, the filter is tracking the state of the system as
if it were on the incorrect lobe. The radial nature of
the range measurement provides no information to the
estimator about correcting the estimated state because
of the symmetric nature of the “butterfly” trajectory.
Therefore, both SACE-2-5-0 and SACE-2-5-2 show in-
consistency after the critical point,and the effective stan-
dard deviation is bigger than the predicted one. How-
ever, it is worth noticing that the dashed blue line settles
below the dashed green line, indicating an increase in
accuracy achieved due to the estimated covariance be-
ing connected with the measurement outcome. Lastly,
SACEMM-2-3-2 is reported in red, and it is the only fil-
ter that shows convergency and consistency during the
whole length of the simulation. The introduction of mul-
tiple models improves accuracy, especially around the
critical point, where smaller subdomains make it easier
for the filter to follow the right path along the correct
lobe. If a model separates from the others, following the
incorrect lobe, then it is weighted down in order to en-
sure a correct estimation. The division of the system un-
certainties in smaller subdomains helps the filter track
the correct trajectory, while the high-order polynomial
update ensures excellent accuracy levels. SACEMM-c-
η-μ has better performance than SACE-c-η-μ when the
initial uncertainties of the state of the system are excep-
tionally high and when the propagated state PDF is mul-
timodal.

The second part of Fig. 7 reports an analysis on the
computational time requested by each filter. The param-
eter τ is evaluated as

τ = Ti
TGSF

, (79)

where Ti is the computational time of the ith filter, with
i = {GSF, BPF, SACE-2-5-0, SACE-2-5-2, SACEMM-2-
3-2}. Therefore, the τ bar expresses the relative compu-
tational effort among the different filters for this applica-
tion. The τ analysis shows that the BPF is the computa-
tionally heaviest filter, while the computational time re-
quested by SACE-c-η-μ and SACEMM-c-η-μ changes
depending on the selection of their parameters.

VI. CONCLUSIONS

A novel filter based on a double estimator has been
presented. The new technique estimates the conditional
mean and the conditional covariance of the posterior
distribution by applying, sequentially, two polynomial
estimators, using the same measurement outcome. The
new approach better matches the estimated state with
its error standard deviation, which is now a polynomial
function of the measurement. Therefore, the newly pro-
posed filter is able to reduce the error uncertainty when
the posterior distribution gets narrower around a low
probability realization of the measurement. In turn, the

better representation of the uncertainty produces a bet-
ter estimate of the state during the subsequent measure-
ment updates.

Three numerical examples have been reported. The
scalar application gives a visual representation of the
benefits of the polynomial approximation of the true
MMSE and its covariance. Thus, the higher the order
of the updates, the more precise the relative state esti-
mate and its covariance.The vectorial application under-
lines the benefits of predicting the covariance by con-
sidering its estimation as working with an augmented
state. The new state estimate improves in accuracy and
a smaller error standard deviation is obtained. The
multiple-model filter is more robust against high initial
standard deviations and multimodal distributions.
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