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With a large number of sensors and control units in networked

systems, distributed support vector machines (DSVMs) play a fun-

damental role in scalable and efficient multi-sensor classification

and prediction tasks. However, DSVMs are vulnerable to adver-

saries who can modify and generate data to deceive the system to

misclassification and misprediction. This work aims to design de-

fense strategies for DSVM learner against a potential adversary. We

establish a game-theoretic framework to capture the conflicting in-

terests between the DSVM learner and the attacker. The Nash equi-

librium of the game allows predicting the outcome of learning al-

gorithms in adversarial environments, and enhancing the resilience

of the machine learning through dynamic distributed learning al-

gorithms. We show that the DSVM learner is less vulnerable when

he uses a balanced network with fewer nodes and higher degree.

We also show that adding more training samples is an efficient de-

fense strategy against an attacker. We present secure and resilient

DSVM algorithms with verification method and rejection method,

and show their resiliency against adversary with numerical experi-

ments.
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1. INTRODUCTION

Support Vector Machines (SVMs) have been widely

used in multi-sensor data fusion problems, such as mo-

tor fault detection [1], land cover classification [30], and

gas prediction [39]. In these applications, a fusion cen-

ter is required to collect data from each sensor and train

the SVM classifier. However, the computations in the

fusion center and its communications with sensors be-

come costly when the size of data and network becomes

large [11].

To solve the large-scale data fusion problems, sev-

eral methods have been developed to speed up SVMs.

For example, in [28], Tsang et al. have introduced an

approximation method to scale up SVMs. In [10], Dong

et al. have presented an efficient SVM algorithm using

parallel optimization. These methods only speed up the

computations in the fusion center, but the data transmis-

sions between fusion center and sensors still require a

significant amount of time and channel usages.

Efficiency is not the only drawback of the central-

ized SVM using fusion center. Sensors that collect sen-

sitive or private information to design the classifier may

not be willing to share their training data [13]. More-

over, a compromised fusion center attacked by an adver-

sary may give erroneous information to all the sensors

in the network. Furthermore, compromised sensors may

also provide misleading information to the fusion center,

and consequently affect uncompromised sensors [6].

Distributed support vector machines (DSVMs) draw

attentions recently as it does not require a fusion

center to process data collections and computations

[13, 23, 29]. Each node in the network solves decen-

tralized sub-problems themselves using their own data,

and only a small amount of data is transferred between

nodes, which makes DSVMs more efficient and private

than the centralized counterpart.

However, DSVMs are also vulnerable. For example,

misleading information can be spread to the whole

network, and the large number of nodes and complex

connections in a network makes it harder to detect

and track the source of the incorrect information [5].

Moreover, even though we can find the compromised

nodes, an adversary can attack other nodes and spread

misleading information.

Thus, it is important to design secure and resilient

distributed support vector machines algorithms against

potential attacks from an adversary. In this paper, we fo-

cus on a consensus based DSVM algorithm where SVM

problem is captured by a set of decentralized convex

optimization sub-problems with consensus constraints

on their decision variables [13, 34]. We aim to design

defense strategies against potential attacks by analyzing

the equilibrium of the game-theoretic model between a

DSVM learner and an attacker.

In our previous work [34], we have built a game-

theoretic framework to capture the conflict of interests

between the DSVM learner and the attacker who can
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modify the training data. In the two-person nonzero-

sum game, the learner aims to decentralize the compu-

tations over a network of nodes and minimize the error

with an effort to minimize misclassification, while the

attacker seeks to modify strategically the training data

and maximize the error constrained by its computational

capabilities.

The game formulation of the security problem en-

ables a formal analysis of the impact of the DSVM al-

gorithm in adversarial environments. The Nash equilib-

rium of the game enables the prediction of the outcome,

and yields an optimal response strategy to the adver-

sary behaviors. The game framework also provides a

theoretic basis for developing dynamic learning algo-

rithms that will enhance the security and the resilience

of DSVMs.

In this paper, we propose several defense strategies

for a DSVM learner against a potential attacker, and we

show the effectiveness of our defense strategies using

numerical experiments. The major contributions of this

work are multi-fold.

Firstly, we capture the attacker’s objective and con-

strained capabilities in a game-theoretic framework, and

develop a nonzero-sum game to model the strategic in-

teractions between an attacker and a learner with a set

of nodes. We then fully characterize the Nash equilib-

rium by showing the strategic equivalence between the

original nonzerosum game and a zero-sum game.

Secondly, we develop secure and resilient distributed

algorithms based on alternating direction method of

multipliers (ADMoM) [4]. Each node communicates

with its neighboring nodes, and updates its decision

strategically in response to adversarial environments.

We present a summary of numerical results in [34].

Lastly, we present four defense strategies against po-

tential attackers. The first defense strategy is to use bal-

anced networks with fewer nodes and higher degrees. In

the second defense strategy, we show that adding train-

ing samples to compromised nodes can reduce the vul-

nerability of the learning system. Adding samples to un-

compromised nodes at the beginning of the training pro-

cess also makes the learner less vulnerable. The third de-

fense strategy is to use verification method where each

node verifies its received data, and only accepts rea-

sonable information from neighboring nodes to prevent

misleading or illegitimate information sent to uncom-

promised nodes. The fourth defense strategy is to use

rejection method where each node rejects unacceptable

updates. Thus, not only misleading information is kept

from affecting uncompromised nodes, but also wrong

updates could be prevented in compromised nodes.

1.1. Related Works

Our work intersects the research areas on data fu-

sion, machine learning, cyber security and machine

learning. Machine learning tools have been used to

tackle data fusion problems, e.g., [9, 16, 31]. However,

machine learning systems can be insecure [2]. For ex-

ample, in [17], Huang et al. have shown that Spam-

Bayes and PCA-based network anomaly detection are

vulnerable to causative attacks. In [3], Biggio et al.

have shown that popular classification algorithms can

be evaded even if the attacker has limited knowledge of

learner’s system.

With distributed machine learning tools developed

for solving large-scale multi-sensor data fusion prob-

lems, each sensor solves sub-problems themselves and

transmits information with neighboring sensors [24].

However, cyber security becomes another problem as

an attacker may launch malicious cyber attacks to the

data fusion networks [7]. Thus, it is important for the

machine learning learner to analyze the equilibrium of

the game with an adversary and design defense strate-

gies against potential attacks.

Game theory is a natural tool to address this prob-

lem. It has been used in the study of the security of

machine learning. For example, in [21], Liu et al. have

modeled the interaction between a learner and an at-

tacker as a two-person sequential noncooperative Stack-

elberg game. In [19], Kantarcioglu et al. have used game

theory to analyze the equilibrium behavior of adversar-

ial learning.

Game theory has also been used widely in cyber

security as it provides mathematical tools for modeling

situations of conflicts and predicting the behaviors of

the attacker and defender in network security [22, 38,

40—43]. For example, in [26], Shen et al. have built an

adaptive Markov game model to infer possible cyber

attack patterns. In [18], Jiang et al. have presented an

attack prediction and optimal active defense method

using a stochastic game.

With game theory, we are able to analyze the game

between a distributed machine learning learner with

an adversary in a network, and further design defense

strategies for the learner against the attacker. In our

work, we focus on a class of consensus-based dis-

tributed support vector machines algorithms [13]. We

assume that the attacker has the ability to modify train-

ing data to achieve his objectives.

In our previous works [33—37], we have built a

game-theoretic model to capture the conflicts between

a DSVM learner and an adversary who can modify

training data or labels, and we have solved the game-

theoretic problem with ADMoM [4]. In this work, we

further analyze the equilibrium behaviors, and design

defense strategies for DSVMs against potential attacks.

We use numerical experiments to verify the effective-

ness of our strategies.

1.2. Organization of the Paper

The rest of this paper is organized as follows. Sec-

tion 2 outlines the consensus-based distributed sup-

port vector machines. In Section 3, we establish game-

theoretic models for the learner and the attacker. Sec-

tion 4 deals with the distributed and dynamic algorithms
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for the learner and the attacker. Section 5 summarizes

our previous numerical experiments. Section 6 presents

four different defense strategies and their corresponding

numerical experiments. Section 7 provides conclusion

remarks.

1.3. Summary of Notations

Notations in this paper are summarized as follows.

Boldface letters are used for matrices (column vectors);

(¢)T denotes matrix and vector transposition; (¢)(t) de-
notes values at step t; [¢]vu denotes the vuth entry of
a matrix; diag(X) is the diagonal matrix with X on its

main diagonal; k ¢ k is the norm of the matrix or vector;

V denotes the set of nodes in a network; Bv denotes the
set of neighboring nodes of node v; U denotes the action
set used by the attacker.

2. DISTRIBUTED SUPPORT VECTOR MACHINES

In this section, we present a distributed support vec-

tor machines learner in the network modeled by an undi-

rected graph G(V,E) with V := f1, : : : ,Vg representing
the set of nodes, and E representing the set of links
between nodes. Node v 2 V communicates only with

his neighboring nodes Bv μ V. Note that without loss
of generality, graph G is assumed to be connected; in
other words, any two nodes in graph G are connected
by a path. However, nodes in G do not have to be fully
connected, which means that nodes are not required to

directly connect to all the other nodes in the network.

The network can contain cycles. At every node v 2 V,
a labelled training set Dv := f(xvn,yvn) : n= 1, : : : ,Nvg
of size Nv is available, where xvn 2 Rp represents a
p-dimensional pattern, and they are divided into two

groups with labels yvn 2 f+1,¡1g. Examples of a net-
work of distributed nodes are illustrated in Fig. 1(a).

The goal of the learner is to design DSVM algo-

rithms for each node in the network based on its local

training data Dv, so that each node has the ability to
give new input x a label of +1 or ¡1 without com-
municating Dv to other nodes v0 6= v. To achieve this,
the learner aims to find local maximum-margin linear

discriminant functions gv(x) = x
Tw¤v + b

¤
v at every node

v 2 V with the consensus constraints w¤1 =w
¤
2 = ¢ ¢ ¢=

w¤V, b
¤
1 = b

¤
2 = ¢ ¢ ¢= b¤V, forcing all the local variables

fw¤v,b¤vg to agree across neighboring nodes. Variables
w¤v and b

¤
v of the local discriminant functions gv(x) can

be obtained by solving the following convex optimiza-

tion problem [13]:

min
fwv ,bv ,f»vngg

1

2

X
v2V
kwvk22 +VCl

X
v2V

NvX
n=1

»vn

yvn(w
T
v xvn+ bv)¸ 1¡ »vn, 8v 2 V , n= 1, : : : ,Nv;

s.t. »vn ¸ 0, 8v 2 V , n= 1, : : : ,Nv;
wv =wu, bv = bu, 8v 2 V , u 2 Bv:

(1)

Fig. 1. Network example. (a) There are 7 nodes in this network.

(b) Each node contains a labelled training set Dv := f(xvn,yvn) :
n= 1, : : : ,Nvg. Each node can communicate with its neighbors. In
each node, the learner aims to find the best linear discriminant line

(Black solid line).

In the above problem, slack variables »vn account for

non-linearly separable training sets. Cl is a tunable

positive scalar for the learner.

To solve Problem (1), we first define rv := [w
T
v ,bv]

T,

the augmented matrix Xv := [(xv1, : : : ,xvNv )
T,1v], the di-

agonal label matrix Yv := diag([yv1, : : : ,yvNv ]), and the

vector of slack variables »v := [»v1, : : : ,»vNv ]
T. With these

definitions, it follows readily that wv = (Ip+1¡¦p+1)rv,
where ¦p+1 is a (p+1)£ (p+1) matrix with zeros ev-
erywhere except for the (p+1,p+1)st entry, given by

[¦p+1](p+1)(p+1) = 1. Thus, Problem (1) can be rewrit-

ten as

min
frv ,»v ,!vug

1

2

X
v2V
rTv (Ip+1¡¦p+1)rv+VCl

X
v2V
1Tv »v

YvXvrv ¸ 1v ¡ »v, 8v 2 V; (2a)

s.t. »v ¸ 0v, 8v 2 V; (2b)

rv = !vu, !vu = ru, 8v 2 V , 8u 2 Bv: (2c)

(2)

Note that !vu is used to decompose the decision vari-

able rv to its neighbors ru, where u 2 Bv. Problem (2)

is a min-problem with matrix form coming from Prob-

lem (1).
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With alternating direction method of multipliers [4],

Problem (2) can be solved distributedly in the following

lemma [13],

LEMMA 1 With arbitrary initialization r(0)v , ¸
(0)
v , !

(0)
vu and

®(0)v = 0(p+1)£1, the iterations per node are given by:

¸(t+1)v 2 arg max
0·¸v·VCl1v

¡ 1
2
¸TvYvXvU

¡1
v X

T
vYv¸v

+(1v +YvXvU
¡1
v f

(t)
v )

T¸v, (3)

r(t+1)v =U¡1v (X
T
vYv¸

(t+1)
v ¡ f(t)v ), (4)

!(t+1)vu = 1
2
(r(t+1)v + r(t+1)u ), (5)

®(t+1)v = ®(t)v +
´

2

X
u2Bv

[r(t+1)v ¡ r(t+1)u ], (6)

where Uv = (Ip+1¡¦p+1)+2´jBvjIp+1, f(t)v = 2®(t)v ¡ 2´
£Pu2Bv !

(t)
vu .

The proof of Lemma 1 can be found in [13]. Itera-

tion (3) is a quadratic programming problem. ¸v are the

Lagrange multipliers per node corresponding to con-

straint (2a). Iteration (4) computes the decision vari-

ables rv, note that the inverse of Uv always exists and

easy to solve. Iteration (5) yields the consensus vari-

ables !vu. Iteration (6) computes ®v, e.g., the Lagrange

multipliers corresponding to the consensus constraint

(2c). Iterations (3)—(6) are summarized into Algorithm

1. Note that at any given iteration t of the algorithm,

each node v 2 V computes its own local discriminant

function g(t)v (x) for any vector x as

g(t)v (x) = [x
T,1]r(t)v : (7)

ALGORITHM 1: ADMoM-DSVM

Randomly initialize r(0)v , ¸
(0)
v , !

(0)
vu and ®

(0)
v = 0(p+1)£1.

1: for t= 0,1,2, : : : do

2: for all v 2 V do
3: Compute ¸(t+1)v via (3).

4: Compute r(t+1)v via (4).

5: end for

6: for all v 2 V do
7: Broadcast r(t+1)v to all neighbors u 2 Bv.
8: end for

9: for all v 2 V do
10: Compute !(t+1)vu via (5).

11: Compute ®(t+1)v via (6).

12: end for

13: end for

Algorithm 1 solves the DSVM problem using AD-

MoM technique. It is a fully decentralized network op-

eration, and it does not require exchanging training data

or the value of decision functions, which meets the re-

duced communication overhead and privacy preserva-

tion requirements at the same time. However, informa-

tion transmitted in the network not only helps improve

the performance of each node, but also increases the

damages from the attacker, as the misleading informa-

tion can be spread to every node. To design a secure

and resilient DSVM algorithm, we first build the attack

model to capture the attacker’s intentions of breaking

the training process of the learner.

3. DISTRIBUTED SUPPORT VECTOR MACHINES
WITH ADVERSARY

In this section, we present the game-theoretic frame-

work of a DSVM learner and an attacker who takes

over a set of nodes with the aim of breaking the train-

ing process of the learner. We assume that the attacker

has a complete knowledge of the learner’s Problem (1)

by Kerckhoffs’s principle: the enemy knows the sys-

tem [25], which enables us to anticipate the interac-

tions of the learner and the attacker in a worst-case

scenario. Moreover, the attacker can easily acquire the

complete knowledge of the learning systems in reality,

for example, by node capture attacks [27] and computer

worms [8], an attacker can compromise the whole net-

work through connections between neighboring nodes,

and thus obtain the private and sensitive information of

the learner.

To achieve the malicious goal, the attacker takes over

a set of nodes Va := f1, : : : ,Vag and changes xvn into
x̂vn = xvn¡ ±vn,

where ±vn 2 Uv, and Uv is the attacker’s action set at
node v. Note that we use Vl = f1, : : : ,Vlg to represent
nodes without the attacker. V = Va+Vl and V = Vl [
Va. A node in the network is either under attack or

not under attack. An example of the impact of the

attacker on the learner is shown in Fig. 2. This type

of attacks represents a challenge for the learner. On the

one hand, the learner will find the incorrect classifiers

at the compromised nodes, and communications in the

network may lead to unanticipated results as misleading

information from compromised nodes can be spread to

and then used by uncompromised nodes. On the other

hand, it is difficult for the learner to identify modified

data, and furthermore, in distributed settings, the learner

may not even be able to detect which nodes are under

attack. Potential real world examples of the attackers are

discussed as follows.

EXAMPLE 1 (Air pollution detection) [20].

Consider an air pollution detection system which

uses DSVM as the classifiers to determine whether cer-

tain areas have air pollution. An attacker can modify the

training data of the certain areas to let the system fail

to recognize the air pollution. Moreover, the attacker

can even modify other areas’ training data to achieve

his goal, since misleading information can be spread

among the whole system by the communications be-

tween neighboring nodes. However, with a large amount

of training data and areas, the learner will fail to detect
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the compromised data and areas, and the results of the

air pollution detection system will be untrustworthy.

EXAMPLE 2 (Distributed medical databases) [13].

Suppose several medical centers aim to find clas-

sifiers together on a certain disease using DSVM. An

attacker can modify the training data of one medical

center, which affects not only the compromised medi-

cal center, but also the uncompromised medical centers,

as the misleading information can be spread among the

network. As a result, all the medical centers might give

inaccurate diagnosis on the disease. To find out the com-

promised training data, the learner is required to exam-

ine all the training data from all the medical centers,

which is costly and sometimes even unrealistic.

Now Problem (1) changes to,

min
fwv ,bv ,f»vngg

1

2

X
v2V
kwvk22 +VCl

X
v2V

NvX
n=1

»vn

s.t.

yvn(w
T
v xvn+ bv)¸ 1¡ »vn, 8v 2 Vl, n= 1, : : : ,Nv;

yvn(w
T
v x̂vn+ bv)¸ 1¡ »vn, 8v 2 Va, n= 1, : : : ,Nv;

»vn ¸ 0, 8v 2 V , n= 1, : : : ,Nv;
wv =wu, bv = bu, 8v 2 V , u 2 Bv:

(8)

By minimizing the objective function in Problem

(8), the learner can obtain the optimal variables fwv,bvg,
which can be used to build up the discriminant function

to classify the testing data. The attacker, on the other

hand, aims to find an optimal way to modify the data

using variables f±vng to maximize the same objective
function. The behavior of the attacker can thus be

captured as follows:

max
f±vng

1

2

X
v2V
kwvk22 +VCl

X
v2V

NvX
n=1

»vn¡Ca
X
v2Va

NvX
n=1

k±vnk0

s.t.

yvn(w
T
v xvn+ bv)¸ 1¡ »vn, 8v 2 Vl, n= 1, : : : ,Nv;

yvn(w
T
v (xvn¡ ±vn) + bv)¸ 1¡ »vn, 8v 2 Va, n= 1, : : : ,Nv;

»vn ¸ 0, 8v 2 V , n= 1, : : : ,Nv;
wv =wu, bv = bu, 8v 2 V , u 2 Bv;
±vn 2 Uv, 8v 2 Va:

(9)

In above problem, the term Ca
P

v2Va
PNv
n=1 k±vnk0

represents the cost function for the attacker. l0-norm

is defined as kxk0 := jfi : xi 6= 0gj, i.e., a total number
of nonzero elements in a vector. Here, we use the

l0-norm to denote the number of elements which are

changed by the attacker. The objective function with

l0-norm captures the fact that the attacker aims to make

Fig. 2. Network with attacker. (a) Node 1 and 4 are under attack.

(b) In compromised node, for example, node 1, an attacker modifies

the training data which leads to a wrong linear discriminant line

(Black dotted line).

the largest impact on the learner by changing the least

number of elements. Constraint ±vn 2 Uv indicates the
action set of the attacker. In this paper, we use the

following form of Uv:

Uv =
(
(±v1, : : : ,±vNv )

¯̄̄̄
¯
NvX
n=1

k±vnk22 · Cv,±
)
,

which is related to the atomic action set Uv0 = f±v j
k±vk22 · Cv,±g. Cv,± indicates the bound of the sum of

the norm of all the changes at node v. A higher Cv,±
indicates that the attacker has a larger degree of freedom

in changing the value xvn. Thus, training these data will

lead to a higher risk for the learner. Notice that Cv,±
can vary at different nodes, and we use C± to represent

the situation when Cv,± are equal at every node. ±v 2Rp
from the atomic action set has the same form with

±vn, but ±v and (±v1, : : : ,±vNv ) are bounded by same Cv,±.

Furthermore, the atomic action set Uv0 has the following
properties [32].

(P1) 0 2 Uv0;
(P2) For any w0 2Rp :

max±v2Uv0 [w
T
0 ±v] = max±0v2Uv0 [¡wT0±0v]<+1:
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The first property (P1) states that the attacker can

choose not to change the value of xvn. Property (P2)

states that the atomic action set is bounded and sym-

metric. Here, “bounded” means that the attacker has the

limit on the capability of changing xvn. It is reasonable

since changing the value significantly will result in the

evident detection of the learner.

For the learner, the learning process is to find the

discriminant function which separates the training data

into two classes with less error, and then use the dis-

criminant function to classify testing data. Since the at-

tacker has the ability to change the value of original data

xvn 2 X into x̂vn 2 X̂ , the learner will find the discrimi-
nant function that separates the data in X̂ more accurate,
rather than the data in X . As a result, when using the
discriminant function to classify the testing data x 2 X ,
it will be prone to be misclassified.

Since the learner aims at a high classification ac-

curacy, while the attacker seeks to lower the accuracy,

we can capture the conflicting goals of the players as

a two-person nonzero-sum game by combining Prob-

lem (8) and Problem (9) together. The solution to the

game problem is described by Nash equilibrium, which

yields the equilibrium strategies for both players, and

predicts the outcome of machine learning in the ad-

versarial environment. By comparing Problem (8) with

Problem (9), we notice that they contain the same terms

in their objective functions and the constraints in the

two problems are uncoupled. As a result, the nonzero-

sum game can be reformulated into a zero-sum game,

which takes the minimax or max-min form as fol-

lows:

min
fwv ,bv ,f»vngg

max
f±vng

1

2

X
v2V
kwvk22 +VCl

X
v2V

NvX
n=1

»vn

¡Ca
X
v2Va

NvX
n=1

k±vnk0

s.t.

yvn(w
T
v xvn+ bv)¸ 1¡ »vn, 8v 2 Vl, n= 1, : : : ,Nv;

yvn(w
T
v (xvn¡ ±vn) + bv)¸ 1¡ »vn, 8v 2 Va, n= 1, : : : ,Nv;

»vn ¸ 0, 8v 2 V , n= 1, : : : ,Nv;
wv =wu,bv = bu, 8v 2 V , u 2 Bv;
±vn 2 Uv, 8v 2 Va:

(10)

Note that the first and fourth constraints only con-

tribute to the minimization part of the problem, the fifth

constraint only affects the maximization part. The sec-

ond and third constraints contribute to both the min-

imization and the maximization part. The first term

of the objective function is the inverse of the dis-

tance of margin. The second term is the sum of all

the slack variables which captures the error penalties.

On one hand, minimizing the objective function cap-

tures the trade-off between a larger margin and a small

error penalty of the learner, while on the other hand,

maximizing the objective function captures the trade-

off between a large error penalty and a small cost

of the attacker. As a result, solving Problem (10) can

be understood as finding the saddle-point equilibrium

of the zero-sum game between the attacker and the

learner.

DEFINITION 1 Let SL and SA be the action sets for
the DSVM learner and the attacker, respectively. No-

tice that here SA = fUvgv2Va . Then, the strategy pair
(fw¤v,b¤v ,f»¤vngg,f±¤vng) is a saddle-point equilibrium so-

lution of the zero-sum game defined by the triple

Gz := hfL,Ag,fSL,SAg,Ki, if K(fw¤v,b¤v ,f»¤vngg,f±vng)·
K(fw¤v,b¤v ,f»¤vngg,f±¤vng)·K(fwv,bv,f»vngg,f±¤vng), 8v 2
V, where K is the objective function of Problem (10).

Based on the property of the action set and atomic

action set, Problem (10) can be further simplified as

stated in the following lemma [34].

LEMMA 2 Assume that Uv is an action set with corre-
sponding atomic action set Uv0. Then, Problem (10) is

equivalent to the following optimization problem:

min
fwv ,bv ,f»vngg

max
f±vg

1

2

X
v2V
kwvk22 +VCl

X
v2V

NvX
n=1

»vn

+
X
v2Va

(VaClw
T
v ±v ¡Cak±vk0)

s.t.

yvn(w
T
v xvn+ bv)¸ 1¡ »vn, 8v 2 V, n= 1, : : : ,Nv;

»vn ¸ 0, 8v 2 V, n= 1, : : : ,Nv;
wv =wu, bv = bu, 8v 2 V, u 2 Bv;
±v 2 Uv0, 8v 2 Va:

(11)

PROOF See Appendix A.

In Problem (10), the second and third constraints are

the coupled terms with the second term of the objective

function. But in Problem (11), the only coupled term

is VaClw
T
v ±v, which is linear in the decision variables of

the attacker and the learner, respectively.

4. ADMOM-DSVM AND DISTRIBUTED ALGORITHM

In the previous section, we have combined Prob-

lem (8) for the learner with Problem (9) for the at-

tacker into one minimax Problem (10), and have showed

its equivalence to Problem (11). In this section, we

develop iterative algorithms to find equilibrium so-

lutions to Problem (11). Using a similar method in

Section II, Problem (11) can be rewritten into matrix
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form as

min
frv ,»v ,!vug

max
f±vg

1

2

X
v2V
rTv (Ip+1¡¦p+1)rv+VCl

X
v2V
1Tv »v

+
X
v2Va

(VaClr
T
v (Ip+1¡¦p+1)±v ¡Cak±vk0)

s.t.

YvXvrv ¸ 1v ¡ »v, 8v 2 V; (12a)

»v ¸ 0v, 8v 2 V; (12b)

rv = !vu,!vu = ru, 8v 2 V , 8u 2 Bv; (12c)

±v 2 Uv0, 8v 2 Va: (12d)

(12)

To solve problem (12), we use best response dy-

namics to construct the best response for the min-

problem and max-problem separately. The min-problem

and max-problem are archived by fixing f±vg and frvg,
respectively. With ADMoM [12], we can develop a

method of solving Problem (12) in a distributed way as

follows: The first step is that each node randomly picks

an initial r(0)v , ±
(0)
v and ®v = 0(p+1)£1, then solve the max-

problem with fr(0)v g, and obtainf±(1)v g. The next step is
to solve the min-problem with f±(1)v g and obtain fr(1)v g,
then we repeat solving the max-problem with frvg from
the previous step and the min-problem with f±vg from
the previous step until the pair frv,±vg achieves conver-
gence. The iterations of solving Problem (12) can be

summarized as follows [34].

LEMMA 3 With arbitrary initialization ±(0)v , r
(0)
v , ¸

(0)
v ,

!(0)vu and ®(0)v = 0(p+1)£1, the iterations per node are
given by:

±(t+1)v 2 arg max
f±v ,svg

VaClr
(t)T
v (Ip+1¡¦p+1)±v

¡ 1Tsv
Ca±v · sv, 8v 2 Va;

s.t. Ca±v ¸¡sv, 8v 2 Va;
±v 2 Uv0, 8v 2 Va:

(13)

¸(t+1)v 2 arg max
0·¸v·VCl1v

¡ 1
2
¸TvYvXvU

¡1
v X

T
vYv¸v

+(1v +YvXvU
¡1
v f

(t)
v )

T¸v, (14)

r(t+1)v =U¡1v (X
T
vYv¸

(t+1)
v ¡ f(t)v ), (15)

!(t+1)vu = 1
2
(r(t+1)v + r(t+1)u ), (16)

®(t+1)v = ®(t)v +
´

2

X
u2Bv

[r(t+1)v ¡ r(t+1)u ], (17)

where Uv = (Ip+1¡¦p+1)+2´jBvjIp+1, f(t)v = VaCl±(t)v +
2®(t)v ¡ 2´

P
u2Bv !

(t)
vu .

PROOF See Appendix B.

Iteration (13) corresponds to the attacker’s Max-

Problem (9), while iterations (14)—(17) correspond to

the learner’s Min-Problem (8). The Minimax Problem

(11) is solved by iterating them together. Note that,

iterations (14)—(17) differ from iterations (3)—(6) only

in fv. In (14)—(17), fv adds another term VaCl±v which

captures the attacker’s impact on the learner. Iterations

(13)—(17) are summarized into Algorithm 2.

ALGORITHM 2: DSVM under attack

Randomly initialize ±(0)v ,r
(0)
v ,¸

(0)
v ,!

(0)
vu and®

(0)
v = 0(p+1)£1.

1: for t = 0,1,2, : : : do
2: for all v 2 V do
3: Compute ±(t+1)v via (13).

4: end for
5: for all v 2 V do
6: Compute ¸(t+1)v via (14).

7: Compute r(t+1)v via (15).

8: end for
9: for all v 2 V do
10: Broadcast r(t+1)v to all neighbors u 2 Bv.
11: end for
12: for all v 2 V do
13: Compute !(t+1)vu via (16).

14: Compute ®(t+1)v via (17).

15: end for
16: end for

Algorithm 2 solves the Minimax Problem (11) using

ADMoM technique. It is a fully distributed algorithm

which only requires transmitting rv between each nodes.
The attacker’s behavior is captured as calculating ±v by

solving the linear programming Problem (13) with the

learner’s decision variable rv. The learner’s behavior
is captured as computing (14)—(17) with ±v from the

attacker. Since the learner transmits rv to each neigh-
boring nodes, misleading information will eventually

spread in the whole network, which leads to misclas-

sifications in all nodes.

5. NUMERICAL RESULTS

In this section, we summarize numerical results of

DSVM under adversarial environments. We use empir-

ical risk to measure the performance of DSVM. The

empirical risk at node v at step t is defined as follows:

R(t)v :=
1

Ñv

ÑvX
n=1

1

2
jỹvn¡ ŷ(t)vn j, (18)

where ỹvn is the true label; ŷ
(t)
vn is the predicted label; and

Ñv represents the number of testing samples in node

v. The empirical risk (18) sums over the number of

misclassified samples in node v, and then divides it by

the number of all testing samples in node v. Notice that

testing samples can vary for different nodes. In order

to measure the global performance, we use the global

empirical risk defined as follows:

R(t)G :=
1

Ñ

X
v2V

ÑvX
n=1

1

2
jỹvn¡ ŷ(t)vn j, (19)
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where Ñ =
P

v2V Ñv, representing the total number of
testing samples. Clearly, a higher global empirical risk

shows that there are more testing samples being mis-

classified, i.e., a worse performance of DSVM. We use

the first experiment to illustrate the significant impact

of the attacker.

Consider a network with 3 nodes, which can be

seen at the bottom right corner of Fig. 3(a). Each node

contains 80 training samples and 1000 testing samples

from the same global training dataset, which is shown

as points and stars in Fig. 3(a). Yellow stars and ma-

genta points are labelled as ¡1 and +1, respectively.
They are generated from two-dimensional Gaussian dis-

tributions with mean vectors [1,1] and [3,3], with the

same covariance matrix [1,0;0,1]. The learner has the

ability Cl = 1 and ´ = 1. The attacker has the atomic

action set parameter C1,± = 9,000,000, and the cost pa-

rameter Ca = 1. The attacker only attacks Node 1 and

the attack starts from the beginning of the training pro-

cess. Numerical results are shown in Fig. 3(b). No-

tice that the risks when there is an attacker are much

higher than the risks when there is no attacker, which

indicates that the attacker has a significant impact on

the learner. Also, we can conclude that the risks at

the node under attack are much higher than the risks

in nodes without attack, but both of them are higher

than the risks when there is no attacker in the net-

work. This shows that the attacker has the ability to

affect uncompromised nodes through network connec-

tions. We can also observe from Fig. 3(a) that the

solid lines, which represent the situation when there is

an attacker, cannot separate yellow stars and magenta

points.

It is clear that the attacker can cause disastrous re-

sults for the learner. In our previous work [34], we have

shown that results of the game between the DSVM

learner and the attacker are affected by both the at-

tacker’s ability and the network topologies. We sum-

marize our previous numerical results from [34] in the

following observations.

OBSERVATION 1

The attacker’s ability is captured by four measures,

i.e., (i) the time t for the attacker to take an action, (ii) the

atomic action set parameter Cv,±, (iii) the cost parameter

Ca, and (iv) the number of compromised nodes jVaj. The
impact of them is summarized as follows.

² The time t for an attacker to take an action does not
affect the equilibrium risks.

² A larger Cv,± increases the equilibrium risk, as a larger
Cv,± indicates that the attacker can make a larger

modification on training data.

² A larger Ca decreases the equilibrium risk, as a larger
Ca restricts the attacker’s actions to make changes.

Fig. 3. Evolution of the empirical risks of ADMoM-DSVM with

an attacker at a network with 3 nodes shown at the bottom right

corner of figure (a). The attacker only attacks red node 1 from the

beginning of the training process. Training data and testing data are

generated from two Gaussian classes. Dotted lines and solid lines

show the results when there is no attacker and there is an attacker,

respectively. Different colors represent risks or discriminant lines of

different nodes.

² A larger number of compromised nodes jVaj increases
the equilibrium risk as attacking more nodes gives the

attacker access to modify more training samples.

OBSERVATION 2 Denote the degree of node v as jBvj=
(jVj¡ 1) and the degree of a network as the average
degree of all the nodes. The impact of network topologies

are summarized as follows.

² Networks with higher degrees and fewer nodes are less
vulnerable to attackers.

² Balanced networks, i.e., nodes in these networks have
the same number of neighboring nodes, are more secure

than unbalanced networks.

Notice that here we assume that each node in the

network contains the same number of training samples.

OBSERVATION 3 For a specified network, assuming that

all the nodes contain the same number of training sam-

ples, the impact of a node is summarized as follows.

² Nodes with higher degrees are more vulnerable, i.e.,
attacking nodes with higher degrees leads to a higher

global equilibrium risk.
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² Attacking nodes with lower degrees can lead to a higher
global equilibrium risk if the network contains nodes

with higher degrees, comparing to networks without

high degree nodes but has the same average degree.

Observations 1, 2 and 3 summarize our previous

numerical experiments in [34]. From Observation 1, the

attacker makes a larger impact when he has a higher

capability, such as, he has a larger Cv,± and a smaller Ca,

or he can attack more nodes. From Observation 2, on the

one hand, the attacker can choose to attack unbalanced

networks with lower degrees and more nodes to make

a more significant impact on the learner, on the other

hand, the learner should select balanced networks with

higher degrees and fewer nodes to reduce potential

damages from attacker. From Observation 3, the attacker

benefits more from attacking nodes with higher degrees,

while the learner should avoid using high degree nodes.

These observations provide both players the strategies to

make a larger impact on the other ones. In the following

subsections, we present in detail how the attacker and

the learner can find better strategies against each other.

5.1. Attacker’s Strategies

Consider that a DSVM learner operates training data

on an unbalanced network. We assume that the attacker

knows the learner’s algorithm and the network topology.

We also assume that the attacker has the ability to attack

any nodes in this network with
PVa
v=1Cv,± · CVa,±, i.e., a

total sum of all changed values in the network should be

bounded by CVa,±. Notice that bounded CVa,± represents a

trade-off between attacking more nodes Va and attacking

each nodes with larger Cv,±. Since attacking different

nodes leads to different global equilibrium risks, and

the attacker prefers higher risks, there exists an optimal

strategy of selecting Va and fCv,±gv2Va for the attacker
which has the highest equilibrium global risk with a

bounded CVa,±. The optimal strategy can be found by

solving the following problem:

max
fVa ,Cv,±g

min
fwv ,bv ,f»vngg

max
f±vng

1

2

X
v2V
kwvk22 +VCl

X
v2V

NvX
n=1

»vn

¡Ca
X
v2Va

NvX
n=1

k±vnk0¡
X
v2Va

hv

s.t.

yvn(w
T
v xvn+ bv)¸ 1¡ »vn, 8v 2 Vl, n= 1, : : : ,Nv;

yvn(w
T
v (xvn¡ ±vn) + bv)¸ 1¡ »vn, 8v 2 Va, n= 1, : : : ,Nv;

»vn ¸ 0, 8v 2 V , n= 1, : : : ,Nv;
wv =wu, bv = bu, 8v 2 V , u 2 Bv;
±vn 2 Uv, i.e.,

PNv

n=1
k±vnk22 · Cv,±, 8v 2 Va;PVa

v=1
Cv,± · CVa ,±:

(20)

Note that Problem (20) extends Problem (10) by

maximizing over variables Va and fCv,±g with a new
constraint

PVa
v Cv,± · CVa,± that captures a bound on the

attacker’s ability. The last term hv in the objective

function represents the cost of attacking node v.

Problem (20) is based on the assumption that the at-

tacker has the knowledge of the learner’s algorithm and

the network topology. The learner aims to minimize the

classification errors in Problem (10), while the attacker

aims to maximize those errors. In Problem (20), the at-

tacker has two components to maximize. Maximizing

over f±vng is the same as in Problem (10). Maximizing

over Va and fCv,±g indicates the objective of the attacker
to maximize the equilibrium risk of the original game

with a bounded CVa,± and a cost hv. By solving Problem

(20), the attacker can find the optimal strategy of Va and
fCv,±gv2Va , which has the maximized equilibrium risk.

However, solving Problem (20) can be a challenge as

the decision variables Va and Cv,± are coupled with the
decisions of the learner and the attacker. The attacker

is still able to make a larger impact on the learner

by Observation 1, 2 and 3. For example, instead of

randomly picking nodes to attack and assigning Cv,±,

the attacker can strategically attack high degree nodes,

which leads to a higher risk from our observations. One

numerical example is shown in Fig. 4.

Consider the learner operates on a network shown in

Fig. 4(a). We assume that the attacker can only attack

2 nodes with the bound CVa,± = 2£ 108, and the cost
of attacking node v, i.e., hv are the same for every

node. A naive attacker may randomly attack 1 node with

Cv,± = 2£ 108. However, a smart attacker will choose 2
nodes with higher degrees, and by modifying the value

of Cv,± in both nodes, he can make a larger impact on

the learner. Numerical results are shown in Fig. 4(b).

From Fig. 4, the attacker has four different strategies,

(i) the attacker only attacks Node 6, (ii) the attacker

only attacks Node 1, (iii) the attacker attacks Node 1,2

with balanced ability, and (iv) the attacker attacks Node

1,2 with unbalanced ability. We can see that when the

attacker choose Strategy (iii), the risk is the highest.

However, if we take the cost of attacking different nodes

into consideration, this strategy may not be the best

as attacking 2 nodes may cost too much. But from

the example, we can see that Observations 1, 2 and 3

provide us a way to find a better strategy for the attacker.

They also provide us tools of finding better strategies

for the learner.

5.2. Learner’s Strategies

A DSVM learner aims to find the best discriminant

functions with the least classification errors. Since an

attacker will increase the classification errors, a better

strategy of the learner is to reduce the attacker’s impact

as much as possible. In this section, we assume that

the learner is trying to find the strategy of network

topology that has a smallest risk with potential attacks.
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Fig. 4. Evolution of moving average of global empirical risks of

ADMoM-DSVM with the attacker on Spam dataset [14]. Each node

contains 40 training samples. Attacker has four strategies with same

CVa ,± = 2£ 108 and Ca = 0:01.

We assume that the learner has the ability to select any

kinds of network topologies and assign any number of

training samples in each node. The learner’s strategy

can be found by solving the following problem,

min
fV,Bv ,Nvg

min
fwv ,bv ,f»vngg

max
f±vng

1

2

X
v2V
kwvk22 +VCl

X
v2V

NvX
n=1

»vn

¡Ca
X
v2Va

NvX
n=1

k±vnk0¡
X
v2V

Tv(Nv)¡
X
v2V

Bv(Bv)

s.t.

yvn(w
T
v xvn+ bv)¸ 1¡ »vn, 8v 2 Vl, n= 1, : : : ,Nv;

yvn(w
T
v (xvn¡ ±vn) + bv)¸ 1¡ »vn, 8v 2 Va, n= 1, : : : ,Nv;

»vn ¸ 0, 8v 2 V , n= 1, : : : ,Nv;
wv =wu, bv = bu, 8v 2 V , u 2 Bv;
±vn 2 Uv, i.e.,

PNv

n=1
k±vnk22 · Cv,±, 8v 2 Va:

(21)

Note that Problem (21) extends Problem (10) by

minimizing over variables V , Bv and Nv with new costs
Tv(Nv) and Bv(Bv). Tv(Nv) represents the cost of training
Nv samples in node v, Bv(Bv) represents the cost of
sending information from node v to his neighboring

nodes u 2 Bv. Problem (21) can be understood as the

learner’s objective of minimizing equilibrium risk of the

game with potential attacks by finding the best network

topology V , Bv and training samples’ assignments Nv.
Solving Problem (21) can be a challenge as V , Bv

and Nv are coupled with the decisions of the learner

and the attacker. But the learner can benefit from Ob-

servation 1, 2 and 3. For example, the learner should

select a balanced network with fewer nodes and higher

degree, which has a smaller equilibrium risk. However,

in reality, the learner may not be able to modify net-

work topologies as the connections between nodes can

be fixed, or it may not be possible to add connections

between nodes. Thus, to reduce the impact of the at-

tacker, the learner requires actionable defense strategies.

In the following sections, we present four different

defense strategies, and we verify their effectiveness with

numerical experiments.

6. DSVM DEFENSE STRATEGIES

In this section, we present four defense strategies

(DSs) for the DSVM learner. We show their effective-

ness with numerical experiments.

6.1. DSVM Defense Strategy 1: Selecting Network
Topology

DS 1 for the learner is to find a network topology

that has a smaller risk when there is an attacker. From

the last section, the learner can find the network topol-

ogy by solving Problem (21). However, Problem (21) is

difficult to solve. But we are still able to find a secure

network topology using Observation 2 and 3. The net-

work topology should be close to a balanced network

with fewer nodes and a higher degree. A numerical ex-

periment is shown in Fig. 5.

Consider that a DSVM learner trains 300 samples,

and he aims to select a secure network topology from

four topologies shown in Fig. 5(a). DS 1 indicates that

we should select network A or B as network A has

the smallest number of nodes among all the networks,

and network B has the highest degree among networks

B,C,D. Numerical results in Fig. 5(b) show that DS 1

has smaller risks.

Though selecting a network with fewer nodes re-

duces the vulnerability of the learner, but each node

is required to train more training samples, which takes

more time and memory usages. In addition, the learner

may not have the ability to select a proper network

topology as most networks are fixed. Moreover, improv-

ing the degree of the network may not be always appli-

cable as adding connections between nodes is costly.

Thus DS 1 is suitable for cases when the network con-

nections are convenient to modify.

Consider the application in which several wire-

less temperature sensors in the building aim to decide

whether to open their air conditioners or not. Since a

large building may have hundreds of sensors and the
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Fig. 5. Evolution of the global empirical risks of ADMoM-DSVM

with an attacker on a random dataset. The learner has four options

of network topologies which are shown in figure (a). Topology A is

a balanced network with 3 nodes and degree 1, each node in this

network contains 80 training samples. Network B is a balanced

network with 6 nodes and degree 1. Network C is a balanced

network with 6 nodes and degree 0.4. Network D is an unbalanced

network with 6 nodes and degree 0.4. Each node in network B,C

and D contains 40 training samples. Attacker attacks 1 node in

network A, but he attacks 2 nodes in network B,C,D, so the attacker

can modify the same number of training samples in different

network topologies. The attacker has Cv,± = 5£ 105 and Ca = 0:01.

temperatures are always changing with time, centralized

classifications may take a significant amount of time to

collect, transmit, and process the data. DSVMs can be

used here as each sensor operates on its own data, and

only a small amount of information is transmitted be-

tween sensors. But if there is an attacker who has the

ability to modify the training data in several sensors,

then the sensors in the building will lead to wrong de-

cisions. In this case, wireless temperature sensors can

adapt and modify their network topology. Thus, a secure

strategy here is to use DS 1 to create a balanced network

with fewer sensors and a higher average degree.

6.2. DSVM Defense Strategy 2: Adding Training
Samples

Since the attacker is limited to making modifications

on the training data, a higher volume of training data

will decrease the ratio of incorrect data at a node. As

long as most of the data are correct, the learner can

Fig. 6. Evolution of global empirical risks of ADMoM-DSVM

with an attacker at a balanced network with 6 nodes and degree 0.4

on random dataset, which is shown in Fig. 5(a) as Network C. Each

node contains 40 training samples. Attacker only attacks node 1

with C1,± = 10
6 and Ca = 0:01. (a) Defense starts from step 0.

(b) Defense starts from step 50.

find the discriminant function with small classification

errors. Thus adding more training samples becomes a

reasonable defense strategy. Numerical experiments are

shown in Fig. 6.

From Fig. 6, when we add training samples to net-

work, the risk is lower. Thus adding training samples is

a proper defense strategy. Note that more samples we

add, the lower the risk will be. Adding training sam-

ples to compromised nodes turns out to be more effi-

cient than adding to uncompromised nodes. However,

training more samples requires more time and mem-

ory usages, which sacrifices efficiency. Thus, DS 2 is a

trade-off between efficiency and security.

DS 2 is suitable for the case when the learner cannot

change the network topology, but the size of training

data is sufficiently large and each node has a strong

computing capability. For example, consider an applica-

tion where several environmental stations plan to detect

whether some areas are under pollution with a wired

communication network. DSVMs are suitable to pro-

cess a large amount of data computations and trans-

missions. However, if an attacker modifies the training

data, environmental stations may lead to misdetection.

In this case, DS 1 may not be applicable as the wired

connections between each station are fixed. However,

since each station can collect enough training data and
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Fig. 7. Evolution of the empirical risks of ADMoM-DSVM with

the attacker at a balanced network with 4 nodes degree 0.4 on

random dataset. Each node contains 60 training samples. Attacker

only attacks Node 1 with C1,± = 10
5 and Ca = 0:01. ¿ = 0:1.

(a) Attack starts from step 0. (b) Attack starts from step 60.

has a higher computation capability, DS 2 is more ap-

propriate and the learner can add more training samples

to each node to make the training process more secure.

Note that using more samples requires additional time

to train and more spaces to store data.

6.3. DSVM Defense Strategy 3: Verification Method

DS 1 suggests that the learner uses a balanced net-

work with fewer nodes and a higher degree. However,

using fewer nodes requires that each node trains more

training samples, which sacrifices the efficiency. In-

creasing the degree of the network requires creating

more connections between nodes, which are usually not

applicable as building new lines may incur a high cost.

DS 2 indicates that adding more training samples can

reduce the vulnerability of the network, which also sac-

rifices the efficiency. Thus, both DS 1 and DS 2 have

their limitations on securing a training process. In this

section, we present a verification method that reduces

the vulnerability without modifying the network topol-

ogy or adding training samples.

In ADMoM-DSVM Algorithm 1, each node in the

network receives ru from his neighboring nodes and it

also sends his rv to his neighboring nodes at each step.

Since ru from neighboring nodes of node v contributes

to the updates of rv, a wrong ru can lead to an incorrect

update of rv. As a result, if node v is protected from

receiving wrong ru from compromised nodes, it can

have a correct discriminant function.

Recall DSVM Problem (2), note that consensus con-

straints rv = !vu,!vu = ru force all the local decision

variables rv to agree with each other. Thus, r
(t)
1 ¼ ¢¢ ¢ ¼

r(t)V should hold for every step t during the training pro-

cess. Thus, if rv violates this, then the learner can tell

that node v is under attack. With Algorithm 1, if node

v finds ru is significantly different from rv, then he will

reject using ru to update himself. We call this method

as the verification method. The ADMoM-DSVM algo-

rithm with verification method can be summarized as

Algorithm 3.

ALGORITHM 3: DSVM with Verification

Randomly initialize r(0)v , ¸
(0)
v , !

(0)
vu , set ®

(0)
v = 0(p+1)£1, setcBv = Bv.

1: for t = 0,1,2, : : : do

2: for all v 2 V do
3: Compute ¸(t+1)v via (3) with cBv.
4: Compute r(t+1)v via (4) with cBv.
5: end for

6: for all v 2 V do
7: Broadcast r(t+1)v to all neighbors u 2 Bv.
8: end for

9: for all v 2 V do
10: Set B̂v =Ø.
11: for all u 2 Bv do
12: if

¯̄̄̄
¯1¡ kr(t+1)u k2

kr(t+1)v k2

¯̄̄̄
¯< ¿

13: Set u 2cBv.
14: end if

15: end for

16: end for

17: for all v 2 V do
18: Compute !(t+1)vu via (5) with cBv.
19: Compute ®(t+1)v via (6) with cBv.
20: end for

21: end for

Algorithm 3 differs from Algorithm 1 in the verifi-

cation method. Each node computes with information

only from trusted neighboring nodes u 2 B̂v. The veri-
fication method is based on the inequality in step 12 of

Algorithm 3. ¿ indicates the tolerance of indifference

from ru to rv, and ¿ ¸ 0. When ¿ is close to 0, node v
is very sensitive to the information from other nodes,

and it only uses ru that is very close to rv. Numerical

experiments are shown in Fig. 7 and Fig. 8.

We can see from Fig. 7 that the global risk has

decreased when there is a verification method. Note

that in uncompromised node 4, the risk is close to the

risk when there is no attacker, while in compromised

node 1, the risk is higher than the risk when there is
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Fig. 8. Evolution of the global empirical risks of ADMoM-DSVM

with the attacker at a balanced network with 4 nodes degree 0.4 on

Spambase dataset [14]. Each node contains 60 training samples.

Attacker only attacks node 1 with C1,± = 10
6 and Ca = 0:01.

(a) Attack starts from step 0. (b) Attack starts from step 120.

no defense. This indicates that, though the verification

method protects uncompromised nodes from receiving

misleading information, it also prevents compromised

nodes from receiving correct information.

Fig. 8 compares the global risks when the learner

uses different ¿ . We can see that when ¿ = 10, the risk

is higher than the risk when ¿ = 0:1, thus some of the

misleading information is still able to be spread in the

network. When ¿ = 0:001, we can see that the risk is

even higher than the risk when there is no defense. Also

note that when there is no attacker, the risk of DSVM

with ¿ = 0:001 does not converge to the risk of normal

DSVM. This indicates that when ¿ is close to 0, the

misleading information cannot be spread to other nodes,

but the useful information is also forbidden to transmit.

Thus DS 3 requires a proper selection of ¿ .

DS 3 is suitable for the case when training data are

used in a large network. Since it is difficult for the at-

tacker to attack many nodes at the same time, for a

network with a large number of nodes, all the uncom-

promised nodes can be kept from being affected by the

compromised nodes. Moreover, the learner can distin-

guish compromised nodes by their high local classifica-

tion risks, and thus, without revoking the training pro-

cess and retraining all the data in every node, the learner

is able to maintain the resilience of the training process

by deleting or correcting the compromised nodes. Com-

paring to DS 1 and 2, DS 3 does not sacrifice efficiency

to maintain security, but the compromised nodes may

result in worse performances.

6.4. DSVM Defense Strategy 4: Rejection Method

DSs 1, 2 and 3 have shown that with selecting proper

network topologies, adding training samples and ver-

ification method, DSVM learner can be less vulnera-

ble to attacks. However, DSs 1 and 2 will sacrifice ef-

ficiency. In DS 3, compromised nodes may result in

worse performances. In this section, we present the re-

jection method where each node rejects unreasonable

updates. With the rejection method, once there is an

attacker, the iteration will terminate to prevent further

damages caused by the attacker.

The rejection method relies on a combined residual,

which measures both the primal and dual error simulta-

neously:

J (t+1) = ´
X
v2V

X
u2Bv

k!(t+1)vu ¡!(t)vuk22 +
2

´

X
v2V
k®(t+1)v ¡®(t)v k22:

(22)

Note that the combined residual contains two terms.

The first term measures the dual residual. The second

term measures the primal residual. The combined resid-

ual has the following lemma [15].

LEMMA 4 Iterations (3)—(6) satisfy that J (t+1) · J (t),
which can also be rewritten as:

´
X
v2V

X
u2Bv

k!(t+1)vu ¡!(t)vuk22 +
2

´

X
v2V
k®(t+1)v ¡®(t)v k22

· ´
X
v2V

X
u2Bv

k!(t)vu ¡!(t¡1)vu k22 +
2

´

X
v2V
k®(t)v ¡®(t¡1)v k22:

(23)

A proof of Lemma 4 can be found in [15]. Lemma

4 indicates that the combined residual always decreases

over time. Since the attacker aims to break the train-

ing process, this inequality will not be satisfied when

there is an attacker. Note that computing Inequality

(23) requires !vu and ®v from every node, which can

be achieved by a fusion center in centralized machine

learning problems. However, since the learner uses a

fully distributed network without a fusion center, we

decentralize Inequality (23) into jVj distributed inequal-
ities, for v 2 V:

´
X
u2Bv

k!(t+1)vu ¡!(t)vuk22 +
2

´
k®(t+1)v ¡®(t)v k22

· ´
X
u2Bv

k!(t)vu ¡!(t¡1)vu k22 +
2

´
k®(t)v ¡®(t¡1)v k22:

(24)

Note that there is no guarantee that Inequality (24)

holds based on Inequality (23). As a result, we relax the
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distributed inequality with a parameter ½ > 1, which is

summarized in the following proposition.

PROPOSITION 1 Iterations (3)—(6) satisfy that J (t+1)v ·
½J (t)v , where

J (t)v = ´
X
u2Bv

k!(t)vu ¡!(t¡1)vu k22 +
2

´
k®(t)v ¡®(t¡1)v k22:

(25)

PROOF

Let us assume that J (t+1)v · ½J (t)v does not hold for

v = v0, we have J
(t+1)
v0

> ½J (t)v0 and J
(t+1)
v 6=v0 · ½J

(t)
v 6=v0 . As a

result, J (t+1)v0
> ½(t+1)J (0)v0

which increases exponentially

with ½ > 1. Since J (t)v is always larger than 0, Inequality

(23) will be violated eventually. Proposition 1 holds.

With the inequality in Proposition 1, the new DSVM

algorithm with rejection method can be summarized into

Algorithm 4. In Algorithm 4, if the inequality at Step

15 is satisfied, the current update will be rejected. J (0)v

should be set to be sufficiently large to pass the first

rejection test. Numerical experiments are shown in Fig.

9, Fig. 10, and Fig. 11.

ALGORITHM 4: DSVM with Rejection

Randomly initialize r(0)v , ¸
(0)
v , !

(0)
vu and ®(0)v = 0(p+1)£1,

set J (0)v very large.

1: for t= 0,1,2, : : : do

2: for all v 2 V do
3: Compute ¸(t+1)v via (3).

4: Compute r(t+1)v via (4).

5: end for

6: for all v 2 V do
7: Broadcast r(t+1)v to all neighbors u 2 Bv.
8: end for

9: for all v 2 V do
10: Compute !(t+1)vu via (5).

11: Compute ®(t+1)v via (6).

12: Compute J (t+1)v via (25).

13: end for

14: for all v 2 V do
15: if J (t+1)v > ½J (t)v
16: ¸(t+1)v = ¸(t)v , r

(t+1)
v = r(t)v ,

17: ®(t+1)v = ®(t)v , !
(t+1)
vu = !(t)v ,

18: J (t+1)v = J (t)v .

19: end if

20: end for

21: end for

From Fig. 9, we can see that the DSVM algorithm

with rejection method has a lower risk than the normal

algorithm when there is an attacker. And it has the same

performance when there is no attacker, which indicates

that when ½= 1:5, rejection method does not affect the

training process. Fig. 10 and Fig. 11 show the results

when ½= 1 and ½= 100, respectively. We can see from

Fig. 9. Evolution of the empirical risks of ADMoM-DSVM

Rejection with the attacker at a balanced network with 4 nodes of

degree 0.4 on Spambase dataset [14]. Each node has 60 training

samples. The attacker only attacks 1 node with C1,± = 10
5 and

Ca = 0:01. The rejection method has ½= 1:5. (a) Attack starts from

step 0. (b) Attack starts from step 60.

Fig. 10 that when ½= 1, the risk is lower when there is

an attacker, but convergence slows down when there is

no attacker. We can see from Fig. 11 that when ½= 100,

the risk with rejection method is even higher than the

risk of the standard algorithm, because wrong updates

can still be treated as a correct update and accumulates

as iteration goes.

From the numerical experiments, the value of ½ is

important to the rejection method. A smaller ½may slow

down the convergence of the DSVM algorithm without

attacker, a larger ½ does not prevent attacks. With a

properly selected ½, the training process becomes less

vulnerable to attackers.

DS 4 is suitable for a wide range of applications as

wrong updates will be rejected. Comparing to DSs 1 and

2, DS 4 does not sacrifice efficiency. Comparing to DS

3, compromised nodes in DS 4 has been kept from being

further damaged by the attacker. One possible drawback

of DS 4 is that it may require insights of the problem

to find a proper ½.

Each defense strategy is suitable for a different sce-

nario and applications. The choice of defense strategies

will depend on the applications and the constraints on

the defender’s actions. Though four defense strategies

have their own advantages and disadvantages, a combi-

nation of all the defense strategies can be used to secure

the training process of the learner.
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Fig. 10. Evolution of the empirical risks of ADMoM-DSVM

Rejection with the attacker at a balanced network with 4 nodes of

degree 0.4 on Spambase dataset [14]. Each node has 60 training

samples. The attacker only attacks 1 node with C1,± = 10
5 and

Ca = 0:01. The rejection method has ½= 1. (a) Attack starts from

step 0. (b) Attack starts from step 60.

Fig. 11. Evolution of the empirical risks of ADMoM-DSVM

Rejection with the attacker at a balanced network with 4 nodes of

degree 0.4 on Spambase dataset [14]. Each node has 60 training

samples. The attacker only attacks 1 node with C1,± = 10
5 and

Ca = 0:01. The rejection method has ½= 100. (a) Attack starts from

step 0. (b) Attack starts from step 60.

7. CONCLUSION

Distributed support vector machines are ubiquitous

but inherently vulnerable to adversaries. This paper has

investigated defense strategies of DSVM against po-

tential attackers. We have established a game-theoretic

framework to capture the strategic interactions be-

tween an attacker and a learner with a network of

distributed nodes. We have shown that the nonzero-

sum game is strategically equivalent to a zero-sum

game, and hence, its equilibrium can be character-

ized by a saddle-point equilibrium solution to a min-

imax problem. By using the technique of ADMoM,

we have developed secure and resilient algorithms that

can respond to the adversarial environment. We have

shown that a balanced network with fewer nodes and a

higher degree is less vulnerable to the attacker. More-

over, adding more training samples has been proved

to reduce the vulnerability of the system. We have

shown that verification method where each node ver-

ifies information from neighboring nodes can protect

uncompromised nodes from receiving misleading in-

formation, but compromised nodes are also prevented

from receiving correct information. We have shown

that rejection method where each node rejects un-

reasonable updates can stop global training process

from deterioration, thus wrong information is thwarted

from affecting the system. One direction of future

works is to extend the current framework to investi-

gate nonlinear DSVM and other machine learning algo-

rithms.

APPENDIX A: PROOF OF LEMMA 2

A detailed proof of Lemma 2 can be found in our

previous work [34]. By using hinge loss function, we

reformulate Problem (10) into the following problem:

min
fwv ,bvg

max
f±vng

1

2

X
v2V
kwvk22

+VlCl

X
v2Vl

NvX
n=1

[1¡ yvn(wTv xvn+ bv)]+

+VaCl

X
v2Va

NvX
n=1

[1¡ yvn(wTv (xvn¡ ±vn)+ bv)]+

¡Ca
X
v2Va

NvX
n=1

k±vnk0

s.t.

wv =wu, bv = bu, 8v 2 V, u 2 Bv;

(±v1, : : : ,±vNv ) 2 Uv, 8v 2 Va:
(26)
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Similarly, Problem (11) can be reformulated into the

following problem:

min
fwv ,bvg

max
f±vg

1

2

X
v2V
kwvk2

+VlCl

X
v2Vl

NvX
n=1

[1¡ yvn(wTv xvn+ bv)]+

+VaCl

X
v2Va

NvX
n=1

[1¡ yvn(wTv xvn+ bv)]+

+
X
v2Va

(VaClw
T
v ±v ¡Cak±vk0)

s.t.

wv =wu, bv = bu, 8v 2 V, u 2 Bv;
±v 2 Uv0, 8v 2 Va:

(27)

As a result, we only need to prove that problem (26)

is equivalent to problem (27). Since both of problems

are min-max problems with the same variables, we only

need to prove that we minimize the same maximization

problem. Moreover, since f±vng is independent in the
maximization part of (26), and ±v is independent in the

maximization part of (27), we can separate maximiza-

tion problem into Va sub-maximization problems, and

solving the sub-problems is equivalent to solving the

global maximization problem. As a result, we only need

to show that the following sub-problem

max
f±vng2Uv

S(f±vng)
¢
=VaCl

NvX
n=1

[1¡ yvn(wTv (xvn¡ ±vn) +bv)]+

¡Ca
NvX
n=1

k±vnk0 (28)

is equivalent to the following sub-problem

max
±v2Uv0

VaCl

NvX
n=1

[1¡yvn(wTv xvn+bv)]+

+VaClw
T
v ±v ¡Cak±vk0: (29)

We adopt the similar proof in [32], recall the properties

of sublinear aggregated action set, U¡v μ Uv μ U+v , where

U¡ ¢
=

n[
t=1

U¡t , U¡t
¢
=

½
(±1, : : : ,±n)

¯̄̄̄
±t 2 U0;

±i = 0, i 6= t:

¾
;

U+ ¢
=

½
(®1±1, : : : ,®n±n)

¯̄̄̄Pn
i=1®i = 1; ®i ¸ 0,
±i 2 U0, i= 1, : : : ,n

¾
:

Hence, fixing any (wv,bv) 2Rp+1, we have the follow-
ing inequalities:

max
f±vng2U¡v

S(f±vng)· max
f±vng2Uv

S(f±vng)· max
f±vng2U+v

S(f±vng)
(30)

We can show that (29) is no larger than the leftmost

term and no smaller than the rightmost term [34]. Thus,

the equivalence between (28) and (29) holds. Hence,

Lemma 2 holds.

APPENDIX B: PROOF OF LEMMA 3

We use best response dynamics to construct the best

response for the min-problem and max-problem sepa-

rately. The min-problem and max-problem are achieved

by fixing frv,»vg and f±vg, respectively. For fixed
fr¤v,»¤vg,

±¤v 2 argmaxf±vg

X
v2Va

(VaClr
¤T
v (Ip+1¡¦p+1)±v ¡Cak±vk0)

s.t. ±v 2 Uv0, 8v 2 Va: (31)

We relax l0 norm to l1 norm to represent the cost

function of the attacker. By writing the dual form of

the l1 norm, we arrive at

±¤v 2 arg maxf±v ,svg
VaClr

¤T
v (Ip+1¡¦p+1)±v ¡ 1Tsv

Ca±v · sv,
s.t. Ca±v ¸¡sv,

±v 2 Uv0:
(32)

For fixed f±¤vg, we have

min
frv ,!vu,»vg

1

2

X
v2V
rTv (Ip+1¡¦p+1)rv

+VaCl

X
v2Va

rTv (Ip+1¡¦p+1)±¤v +VCl
X
v2V
1Tv »v

YvXvrv ¸ 1v ¡ »v, 8v 2 V;
s.t. »v ¸ 0v, 8v 2 V;

rv = !vu, !vu = ru, 8v 2 V, 8u 2 Bu:
(33)

Note that term ¡Cak±¤vk0 is removed since it does not
play a role in the minimization problem. Based on

(32) and (33), we have the method of solving Problem

(12) as follows, first step is that we randomly pick

initial fr(0)v ,±(0)v g, and then we solve Max-problem (32)

with fr(0)v g to obtain f±(1)v g. In next step, we solve
Min-problem (33) to obtain fr(1)v g with f±(1)v g from
the previous step. We repeat solving the max-problem

with fr(t¡1)v g and solving the min-problem with f±(t)v g
until convergence. Furthermore, we use the alternating

direction method of multipliers (ADMoM) to solve

Problem (33).

The ADMoM is a distributed optimization algorithm

solving the following problem:

min
r,!
f(r) + g(!)

s.t. Mr= !, (34)

where f and g are convex functions [12].
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The augmented Lagrangian corresponding to (34) is

L(r,!,®) = f(r) + g(!) +®T(Mr¡!)+ ´
2
kMr¡!k2,

(35)

where ® denotes the Lagrange multiplier.

Then, the ADMoM solves problem (34) by the

update rules below:

r(t+1) 2 argmin
r
L(r,!(t),®(t)); (36)

!(t+1) 2 argmin
!
L(r(t+1),!,®(t)); (37)

®(t+1) = ®(t) + ´(Mr(t+1)¡!(t+1)): (38)

The objective here is to transform Problem (33) into

the form of (34), and then we can solve Problem (33)

by iterations (36), (37), and (38). We adopt a similar

method in [13], which leads to the following result.

REMARK 1 Each node iterates ¸(t)v ,r
(t)
v and ®

(t)
v , given by

¸(t+1)v 2 arg max
0·¸v·VCl1v

¡ 1
2
¸TvYvXvU

¡1
v X

T
vYv¸v

+(1v +YvXvU
¡1
v f

(t)
v )

T¸v, (39)

r(t+1)v =U¡1v (X
T
vYv¸

(t+1)
v ¡ f(t)v ), (40)

!(t+1)vu = 1
2
(r(t+1)v + r(t+1)u ), (41)

®(t+1)v = ®(t)v +
´

2

X
u2Bv

[r(t+1)v ¡ r(t+1)u ], (42)

where Uv = (Ip+1¡¦p+1)+2´jBvjIp+1, f(t)v = VaCl±
¤
v

+2®(t)v ¡2´
P
u2Bv !

(t)
vu.

By combining the above remark with Problem (32),

we can obtain Lemma 3.
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