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This paper considers a stationary camera calibration problem that

estimates the camera orientation angles yaw, pitch, and roll, using a

drone trajectory recorded by a GPS. There are three challenges in us-

ing a GPS trajectory as ground truth for camera calibration. One, the

altitude of GPS data is inaccurate with an unknown bias. Two, theGPS

receiver and camera are not time synchronized, and there is an un-

known time offset between the two systems. Three, the GPS trajectory

is time discrete, and accurate interpolation is needed. This is actually

an estimation problem since velocity is also needed. To address the

first two challenges, we formulate the problem as a parameter estima-

tion problem to estimate a vector consisting of the GPS altitude bias

and time offset in addition to the camera yaw, pitch, and roll biases.

We then develop a special maximum-likelihood estimator using the

Iterated Least-Squares algorithm, which can work with a nonsynchro-

nized time-discrete GPS trajectory for the third challenge. Since the

camera measurement errors are usually small, this requires a high cal-

ibration accuracy so that the residual bias error following the cali-

bration should not be significant compared to the measurement er-

ror standard deviation.The calibration accuracy depends highly on the

drone’s trajectory. This paper also recommends an appropriate drone

trajectory that can yield a good calibration accuracy, namely, 14% of

the measurement error standard deviation. Simulation tests are con-

ducted to demonstrate the algorithm performance. The estimation re-

sultsmeet theCramer–Rao lower bound (CRLB) since the normalized

estimation error squared w.r.t. the CRLB is statistically acceptable.
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I. INTRODUCTION

This paper presents a camera calibration approach
for a stationary camera that looks at air targets. We as-
sume the camera is of “pinhole” type without radial and
tangential distortion. The position of the camera is as-
sumed to be known. The calibration computes the cam-
era orientation,which is defined by three rotation angles:
yaw, pitch, and roll. Since the camera is looking for air
targets, there is no fixed object with known position in
its field of view (FOV). The calibration is based on the
trajectory of a drone instrumented with a GPS receiver,
which, however, usually has a significant altitude bias er-
ror.1 Also, the camera andGPS receiver are not time syn-
chronized. This introduces an unknown fixed time offset
between theGPS and camera time-stamps.Furthermore,
the drone trajectory is a sequence of discrete points with
a certain time interval, and there is no analytical expres-
sion for the trajectory.This paper will develop a practical
approach for the problem of estimating the camera ori-
entation, the GPS altitude bias and the time offset.

Camera calibration is not a new problem.Numerous
works have been done before, and they can be catego-
rized into two areas: computer vision-related applica-
tions and estimation theory-based approaches.The cam-
era calibration in computer vision is developed from the
Perspective-n-Point (PnP) problem [4], [13].The original
PnP problem is described as follows: Given the relative
spatial locations of n control points Pi with i = 1, . . . ,n,
and given the angle to every pair of these points from an
additional point, called the center of perspectiveC, find
the lengths of the line segments joiningC to each of the
control points. The camera calibration is based on the
matching of n 3D control points and their correspond-
ing points in the 2D image space. They share the same
angles of arrival with reference to the camera center of
perspective C. A number of solutions have been devel-
oped with this approach [4], [7], [8], [10], [13]. Some fo-
cused on the solution of theminimum number of control
points required (n = 3) as P3P problem [7], [8], [10], [13],
and some deal with a large number of points consist-
ing of outliers and inaccurate points. The RANSAC [4]
scheme can be applied to select good samples. Some ex-
tensions on the camera calibration take unknown focal
length and radial distortion into consideration [9], [21].

If we apply the PnP approach to our problem, then a
3D GPS-instrumented drone trajectory needs to match
the camera-measured 2D trajectory.Since there is an un-
known time offset between GPS-based 3D and camera
2D trajectories and an unknown altitude bias on the 3D
trajectory, it is not practical to apply point-to-point 3D–
2D matching. We then seek a solution from the estima-
tion theory.

1The altitude estimate fromGPS is substantially less accurate than the
horizontal position since there are fewer high-orbit satellites, which
provide most of the altitude information versus low-orbit satellites,
which provide most of the horizontal location information.
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Unlike the computer vision approach, which devel-
ops the camera calibration as a particular geometric
problem, the estimation theory approach formulates the
camera calibration as a parameter estimation problem
with stochastic models. It defines the unknown param-
eter to be estimated as θ , and builds a relationship be-
tween θ and measurements that include noise. If the
problem is observable (i.e.,with a unique solution), opti-
mization algorithms, such as gradient descent, Newton’s
algorithm,or Iterated Least Squares (ILS) [1], can be ap-
plied in a systematic manner. A number of works along
this line have been carried out to estimate the sensor
position/orientation and measurement biases. This is of-
ten referred to as the sensor registration problem. It
can be solved offline using either ILS or maximum-
likelihood (ML) estimator from a batch of data [3], [5],
[19], [22], [23], [27], or online (estimating the sensor
biases and target trajectories simultaneously) using a
Kalman filter (KF) type dynamic estimator or Recursive
Least-Squares (RLS) approach [2], [17], [24], [25]. The
online approaches (also referred to as auto-calibration)
sound more attractive. However, they estimate a large
augmented state consisting of all target states and sensor
biases. This large state may create computational infea-
sibility for real time when the number of targets is large.
Furthermore, sensor bias estimation accuracy is not al-
ways guaranteed, as arbitrary target trajectories do not
reduce the bias error compared to a dedicated special
trajectory. The calibration accuracy (or sensor bias esti-
mation accuracy) is paramount in our problem, as cam-
era orientation must be accurately estimated so that the
residual bias error should not be significant compared
to the camera measurement error. We therefore prefer
an offline approach that allows a GPS-equipped drone
to fly in a special predefined path dedicated to accu-
rate camera calibration. Such a path will be discussed
in the sequel. The previous work on offline sensor reg-
istration mainly dealt with radar pose and measurement
biases [5], [19], [22], [23]. Camera calibration was con-
ducted in [3], [27]. The yaw, pitch, and roll biases of mul-
tiple cameras and target locations are estimated simulta-
neously using the ILS method in [3] for a satellite-based
camera observing an exoatmospheric target of opportu-
nity. In [27], a camera was calibrated through observing
a planar pattern shown at several different orientations,
and camera intrinsic and extrinsic parameters were es-
timated using a closed-form solution. Neither of them
deals with unknown time offsets among different sys-
tems, for example, sensor and ground truth systems—the
different sensors are assumed to be time synchronized.

Online and offline calibration with an unknown time
offset have been discussed in various applications [6],
[11], [14]–[16], [18], [20]. We focus on the offline solu-
tions [6], [11], [18], [20]. In [11] and [18], the time off-
set and spatial calibration were conducted separately
in sequence. The time offset was estimated first, and
then spatial calibration was conducted. A more robust
approach [6], [20] estimated the time offset and spa-

tial biases simultaneously. This was a robotics applica-
tion with camera, inertial measurement unit (IMU) and
laser rangefinder. It estimated the time offset among
sensors and measurement transformation.However, the
camera was assumed well calibrated. The Levenberg–
Marquardt (LM) algorithm was used to minimize an ob-
jective function based on theML criterion,using station-
ary objects detected by the camera and rangefinder on
a moving platform.Although the approach included un-
known time offsets into its estimation parameter,camera
calibration was not conducted.

In this paper, we develop our approach based on
estimation theory, which will include the GPS altitude
bias and time offset in the estimation of the parame-
ter vector θ . Another challenge is that the GPS 3D tra-
jectory is given in numerical form. The preliminary ver-
sion of the present study, [26], conducted calibration as-
suming an accurate GPS without altitude bias. An ILS
algorithm was developed to perform calibration based
on a stochastic model dealing with a GPS trajectory ex-
pressed by a sequence of discrete-time points. In the
present paper, inaccurate GPS with unknown altitude
bias is used. The calibration accuracy drops significantly
with this additional unknown unless it is part of the esti-
mated parameter vector. If the residual bias error (fol-
lowing the calibration) is not small enough compared
to the camera measurement error, then the calibration
is not meaningful. We will develop an enhanced ILS al-
gorithm to improve the estimation accuracy, and recom-
mend a practical drone path to achieve good calibration
accuracy.

The rest of the paper is structured as follows.
Section II describes the three coordinate systems used
in this paper. Section III describes the problem for-
mulation, namely, the stochastic model for estimation.
Section IV presents the estimation algorithm based on
the stochastic model dealing with numeric GPS trajecto-
ries. Section V presents simulation results on calibration
error, and recommends a suitable drone path.SectionVI
draws the conclusions.

II. COORDINATE SYSTEMS

The following three coordinate systems are used in
this paper:

� Common coordinate system with x-y-z as East,North,
and Up (ENU).

� Camera coordinate system with xC-yC-zC centered at
the camera position (xs, ys, zs), shown in Fig. 1.

� Image coordinate system with xI-yI shown in Fig. 1.

The notations used in the paper are listed in Table I.
The conversion of x to xC is given by

xC = T(α, ε, ρ)(x − xs)

= Tz(ρ)Tx(ε − 90o)Tz(−α)(x − xs), (1)

4 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 18, NO. 1 JUNE 2023



Fig. 1. Camera and image coordinate systems.

where we use the following mnemonic notations for ro-
tations between 3D Cartesian systems:

Tx(φ) =
⎡
⎣
1 0 0
0 cosφ sinφ

0 − sinφ cosφ

⎤
⎦ , (2)

for a rotation around the x-axis by φ from y toward z,

Tz(φ) =
⎡
⎣

cosφ sinφ 0
− sinφ cosφ 0

0 0 1

⎤
⎦ , (3)

for a rotation around the z-axis byφ from x toward y.The
rotation around the y-axis is not necessary asTx(90o−ε)
replaces the y-axis by the z-axis, so that rotation around
the z-axis occurs twice. The combined rotation in (1) is

T(α, ε, ρ) =
⎡
⎣
cαcρ + sαsεsρ cαsεsρ − sαcρ −cεsρ
sαsεcρ − cαsρ sαsρ + cαsεcρ −cεcρ

sαcε cαcε sε

⎤
⎦ ,

(4)
where

sα = sinα, sε = sin ε, sρ = sin ρ, (5)

cα = cosα, cε = cos ε, cρ = cos ρ. (6)

Table I
Notations

x [x y z]′, a point in the common (ENU) coordinate system.
xC [xC yC zC]′, a point in the camera coordinate system.
xI [xI yI]′, a point in the image coordinate system.
xs [xs ys zs]′ sensor (camera) position.
α Camera pointing azimuth or yaw (clockwise from N).
ε Camera pointing elevation or pitch (up from horizontal).
ρ Camera roll (ideally zero), clockwise around the center of the

FPA.
� GPS altitude bias. The GPS-provided altitude is higher than

the true value when � is positive; otherwise, � is negative.
τ Time offset between the drone GPS and the camera. The GPS

clock is ahead of the camera clock when τ is positive;
otherwise, τ is negative.

The conversion of xC to xI is

xI = f(xC) =

⎡
⎢⎣

Px
2 + xC f

zC

Py
2 + yC f

zC

⎤
⎥⎦ , (7)

where f is the focal length with units of pixel (assumed
square)

f = Px
2 tan(�x/2)

= Py
2 tan(�y/2)

, (8)

and Px and Py are the numbers of pixels in xI and yI co-
ordinates, respectively;�x and�y are the FOV—angular
spans—in xI and yI, respectively.

III. PROBLEM FORMULATION

This section formulates the estimation problem in a
stochastic model. The parameter to estimate is

θ = [α ε ρ � τ ]′, (9)

which consists of three camera orientation angles α, ε

and ρ, GPS altitude bias �, and the time offset between
the drone GPS and camera systems τ , which are esti-
mated simultaneously. The stochastic model for estimat-
ing θ is

Z = H(θ,X) + w, (10)

where H(·) is defined in (17), Z is the camera measure-
ment vector consisting of n discrete-time points in the
image coordinates as

Z = [z(t1)′ . . . z(tn)′]′

= [xI(t1)′ . . . xI(tn)′]′ + w, (11)

with measurement times t1, . . . , tn, w is a 2n zero-mean
Gaussian measurement noise vector with covariance

R = I2n×2nσ
2
F, (12)

and σ 2
F is the variance of the measurement noise in the

focal-plane array (FPA). For details of how this is ob-
tained based on the optics’ point spread function (PSF)
and pixel size, see [12]. X is the GPS drone trajec-
tory (with unknown altitude bias and time offset) rep-
resented by a set of discrete-time points in the common
coordinate system (ENU) at times corresponding to the
camerameasurement times, corrected by the (unknown)
time offset. It is defined as

X = [x(t1 + τ )′ . . . x(tn + τ )′]′. (13)

However,X is not known exactly.The available informa-
tion on the GPS trajectory is

X = [x(t1)′ . . . x(tm)′]′, (14)

where t1, . . . , tm do not correspond to the times inX, and
X and X intervals can differ. We need to find the rela-
tionship between X and X, so that the model in (10) can
be utilized for estimation. This will be solved in the next
section.
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Fig. 2. True and GPS trajectories.

Figure 2 shows the relationship of the true trajectory
X̆ and GPS trajectory of the drone, where

X̆ = [x̆(t1)′ . . . x̆(tn)′]′. (15)

Each discrete-time point (•) on the true trajectory has a
corresponding point (�) on the GPS trajectory. The re-
lationship of the ith points of X̆ and X is

x̆(ti) = x(ti + τ ) − [0 0 �]′. (16)

The measurement function H in (10) is then

H =

⎡
⎢⎣
h1[α, ε, ρ, x̆(t1)]

...
hn[α, ε, ρ, x̆(tn)]

⎤
⎥⎦ (17)

with

hi(·) = f
{
T(α, ε, ρ)[x(ti + τ ) − [0 0 �]′ − xs]

}

= f(xCi ) = xIi

i = 1, . . . ,n. (18)

The above converts a position “�” xi to a position “•” x̆i,
then converts to camera coordinates as xCi using (1), and
finally converts to the image space as xIi using (7).

IV. ESTIMATION ALGORITHM

This section solves the problem described in
Section III using a unique ILS algorithm, which is
illustrated in Fig. 3. Its uniqueness lies in the fact that Z
and X are used to estimate X and Ẋ, and then Z and X
are used in the iterative estimation of θ , defined in (9).

Given the camera measurement Z, the GPS trajec-
tory X and the initial value of the parameter θ̂0, the al-
gorithm finds θ̂ through iteration, indexed by j, based on
the nonlinear model given in (10). We will describe the
algorithm with the following three steps:

(A) Estimation of X j and its velocity Ẋ j from X and θ̂ j
in the jth iteration. X j and Ẋ j are needed in the θ

estimation in (B);

Fig. 3. The ILS estimation algorithm.

(B) Updating of θ̂ j to θ̂ j+1 using an optimization algo-
rithm based on the model (10) with estimated X j

and Ẋ j;
(C) Stop the iteration when a satisfactory θ̂ is obtained.

A. Estimate X and its Velocities Ẋ

To estimate θ ,we need to knowX and its velocities Ẋ
from the positions X (namely, to estimate the GPS tra-
jectory “�” points from “◦” points in Fig. 2), so that the
discrete-time points on the GPS trajectory are at times
[t1+τ, . . . , tn+τ ] corresponding to the camera measure-
ments at times [t1, . . . , tn].2 The Least-Squares (LS) fit-
ting algorithm developed in [26] used a sliding window
containing the neighboring “◦” points before and after a
particular “�” to estimate its position and velocity.How-
ever, this will not perform well when a maneuver hap-
pens within the window. We therefore enhance it as a
two-step LS fitting approach in this paper. Figure 4 il-
lustrates the two steps. We can see the one-step LS ap-
proach in (a) has a large error when there is a maneuver.
The two-step LS fitting approach shown in (b) uses two
LS estimators on the neighboring points before and af-
ter the “�”. They obtain two estimates “b” and “a”, re-
spectively. The final estimate “c” is a combination of “b”
and “a”. The estimation error of the two-step LS fitting
is therefore reduced significantly.

In the two-step LS fitting approach,we illustrate LS1
(applied to the neighbors before the “�”) to obtain point
“b” in detail in the following. The estimation of point
“a” is similar. First of all, we estimate the velocities and
accelerations of the nearest “◦” [assuming x(ti)] before
the “�”. Its velocity and acceleration are

ẋ(ti) = [ẋ(ti) ẏ(ti) ż(ti)]′, (19)

ẍ(ti) = [ẍ(ti) ÿ(ti) z̈(ti)]′. (20)

2This amounts to more than interpolation since the velocities are also
estimated, and a special approach is used when the drone maneuvers.
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Fig. 4. The LS fitting algorithms. (a) One-step LS fitting approach
developed in [26]. (b) Two-step LS fitting approach used in the

present paper.

The vectors consisting of velocities and accelerations in
x, y, and z coordinates are defined as

dix = [ẋ(ti) ẍ(ti)]′, (21)

diy = [ẏ(ti) ÿ(ti)]′, (22)

diz = [ż(ti) z̈(ti)]′. (23)

They are estimated separately. The model to estimate dix
from its neighbors is

�i
x = Didix, (24)

where

�i
x =

⎡
⎢⎣
x(ti−δ ) − x(ti)

...
x(ti−1) − x(ti)

⎤
⎥⎦ , (25)

Di =

⎡
⎢⎢⎣
Ti−δ −0.5T

2
i−δ

...
...

Ti−1 −0.5T
2
i−1

⎤
⎥⎥⎦ , (26)

and

Ti−k = ti−k − ti (27)

k = [δ, . . . , 1].

The number of neighboring points used in (24) is δ = 3.
LS is applied to estimate dix as

d̂ix = [(Di)′Di]−1(Di)′�i
x, (28)

and diy and diz are estimated similarly as

d̂iy = [(Di)′Di]−1(Di)′�i
y, (29)

d̂iz = [(Di)′Di]−1(Di)′�i
z, (30)

Next, we compute positions and velocities of “�”,
namely, “b” point in Fig. 4(b). We assume the “�” is the
kth point inX.The positions and velocities are computed
by

[
xb(tk + τ j)
ẋb(tk + τ j)

]
=

⎡
⎣1 Tk

T 2
k

2
0 1 Tk

⎤
⎦

⎡
⎣
x(ti)
ẋ(ti)
ẍ(ti)

⎤
⎦ , (31)

[
yb(tk + τ j)
ẏb(tk + τ j)

]
=

⎡
⎣1 Tk

T 2
k

2
0 1 Tk

⎤
⎦

⎡
⎣
y(ti)
ẏ(ti)
ÿ(ti)

⎤
⎦ , (32)

[
zb(tk + τ j)
żb(tk + τ j)

]
=

⎡
⎣1 Tk

T 2
k

2
0 1 Tk

⎤
⎦

⎡
⎣
z(ti)
ż(ti)
z̈(ti)

⎤
⎦ , (33)

whereTk = tk+τ j−ti and τ j is from θ j in the jth iteration.
The likelihood of point “b” [see in Fig. 4(b)] is computed
using the measurement residual

vb = [(�i
x − Didix)

′ (�i
y − Didiy)

′ (�i
z − Didiz)

′]′, (34)

according to

Lb = N (vb; 0, I), (35)

whereN (·) is the standard 3δ-multivariateGaussian pdf.
The second step LS is computed in a similar manner

to obtain the positions, velocities, and likelihood of point
“a”. The final estimate, for point “c” in Fig. 4(b) is based
on a weighted average as follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

x̂(tk + τ j)
ˆ̇x(tk + τ j)
ŷ(tk + τ j)
ˆ̇y(tk + τ j)
ẑ(tk + τ j)
ˆ̇z(tk + τ j)

⎤
⎥⎥⎥⎥⎥⎥⎦

= La

La + Lb

⎡
⎢⎢⎢⎢⎢⎢⎣

xa(tk + τ j)
ẋa(tk + τ j)
ya(tk + τ j)
ẏa(tk + τ j)
za(tk + τ j)
ża(tk + τ j)

⎤
⎥⎥⎥⎥⎥⎥⎦

+ Lb

La + Lb

⎡
⎢⎢⎢⎢⎢⎢⎣

xb(tk + τ j)
ẋb(tk + τ j)
yb(tk + τ j)
ẏb(tk + τ j)
zb(tk + τ j)
żb(tk + τ j)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (36)

B. Update the Estimate of θ

The parameter given in (9) is estimated based on

θ̂ = argmin
θ

||Z − H(θ,X)||2R−1 . (37)

Using the ILS [1] to solve the above optimization,3 one
has

θ̂ j+1 = θ̂ j + P jJ′
jR

−1[Z − H(θ j,X j)], (38)

3The ILS is the numerical algorithm to solve for theMLestimate under
Gaussian assumption.
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Fig. 5. Test scenario 1. Target moves in constant velocity in a vertical
rectangle (1, 2, 3, 4) twice. The higher and lower horizontal edges are
at altitudes of 284 m and 84 m, respectively, and the near and far

vertical edges are at ranges of 200 and 500 m, respectively. The target
speed is 12.5 m/s. (a) Top view in the 3D common coordinates. (b)

Trajectory in image coordinates.

P j = (J′
jR

−1J j)−1, (39)

j = 1, . . . ,nj

with the Jacobian

J j = [∇θ jH(θ j,X)′]′ = [∇θ jh1(·)′ . . . ∇θ jhn(·)′]′, (40)

where j is the iteration index. The final estimate θ̂ is the
value to which the iteration (38) converged using a stop-
ping criterion. The derivatives needed for (40) are given
in Appendix B.

C. Stopping Criterion

To obtain a good calibration result, we set a tight
stopping criterion. First, we normalize the measurement
residual squared element by element in iteration j

V j = [Z − H(X j, θ̂ j)] ⊗ [Z − H(X j, θ̂ j)]σ−2
F . (41)

Then, we check every element v j,i with (i = 1 . . . 2n) in
V j, where 2n is the number of measurements times the
measurement dimension 2.All v j,i must be below the “3
sigma” limit

v j,i ≤ 32. (42)

This element-wise checking criterion can prevent a few
large measurement residuals being smoothed by a large
number of small residuals. Also, to prevent a run that
cannot meet the stopping criterion, the maximum num-
ber of iterations is set to 20.

V. SIMULATION RESULTS

This section evaluates the performance of the al-
gorithm described in Section IV. We simulate two test
scenarios. Scenario 1 shown in Fig. 5 has a drone (quad-
copter) moving in a vertical rectangular trajectory 1, 2,
3, 4 with two cycles. Points 1 and 4 are at near range of
200 m with altitudes of 284 m and 98 m, respectively.
Points 2 and 3 are at farther range of 500 m with alti-
tudes 284 m and 98 m, respectively. The drone moves

Fig. 6. Test scenario 2. Target moves in constant velocity, makes a
180o turn, and flies back in constant velocity. The target speed is

12.5 m/s. (a) Top view in the 3D common coordinates. (b) Trajectory
in image coordinates.

with a nearly constant speed of 12.5 m/s between the
four edges. When reaching a corner, it decelerates to 0
m/s, then accelerates to 12.5 m/s on the new direction.
The total duration is 109.2 s with 546 measurements.The
design principle of the trajectory for this scenario is to
span the entire FOV (with near and far motion, i.e., also
in depth). Scenario 2 uses the recommended drone path
in [26].This is shown in Fig. 6 with the dronemoving with
speed of 12.8 m/s at altitude 100 m, and then it makes a
180o turn, and flies back with the same speed and alti-
tude. The total duration is 36 s with 126 measurements.
The inaccurate GPS trajectories are discretized with a
time interval of 0.1 s. Camera measurements sampling
interval is 0.2 s. The camera to calibrate has a FOV of
10o and 17.8o horizontal and vertical, respectively. The
nominal orientation angles4 are set as α = 30o, ε = 2o,
and ρ = 0o. However, their actual values (to be esti-
mated) are α = 32o, ε = 4.1o, and ρ = 2.3o. The camera
provided the measurements only when the target is in its
FOV with measurement error standard deviation σF =
1pixel. The time and altitude offsets are τ = 1.35 s and
� = 10 m in both scenarios, respectively.We set the time
offset precision lower than the GPS discretized preci-
sion5 on purpose to observe the algorithm estimation ac-
curacy better.We will study the estimation accuracy, the
statistical efficiency through normalized estimation er-
ror squared (NEES) w.r.t. the Cramer–Rao lower bound
(CRLB) [2] and the real impact of the results next.

A. Estimation Accuracy

We conducted 100 Monte Carlo runs for each sce-
nario,and recorded the rootmean square error (RMSE).
The CRLB-based covariance matrix is also computed as
a benchmark, and is given by

P = (J′R−1J)−1 (43)

4The nominal values are the design values. After system installation,
the actual values are usually biased w.r.t. the nominal values.
5The smallest significant digit for the offset is 0.01 s, while for the GPS,
it is 0.1 s.
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Table II
CRLB and RMSE From 100 Runs

Scenario Parameter RMSE σCRLB

α—yaw (mdeg) 0.23 0.21
ε—pitch (mdeg) 0.87 0.82

1 ρ—roll (mdeg) 2.90 2.81
�— (mm) 4.69 4.35
τ (ms) 0.27 0.22

α—yaw (mdeg) 1.34 1.05
2 ε—pitch (mdeg) 36.08 32.21

ρ—roll (mdeg—yaw) 14.63 14.25
�— (mm) 531 475
τ (ms) 0.80 0.75

α—yaw (mdeg) 0.45 0.43
2∗ ε—pitch (mdeg) 0.47 0.43

ρ—roll (mdeg) 8.89 8.42
τ (ms) 0.57 0.50

where J is computed by (38), but θ used in (38) is the
true value, namely,

θ = [32o 4.1o 2.3o 10 m 1.35 s]′. (44)

Note the three angles in θ should be converted to radi-
ans as the unit of measurement in both CRLB and ILS
computing, as discussed before. The CRLB standard de-
viations of the estimated parameters are

αCRLB =
√
P(1, 1), (45)

εCRLB =
√
P(2, 2), (46)

ρCRLB =
√
P(3, 3), (47)

�
CRLB =

√
P(4, 4), (48)

τCRLB =
√
P(5, 5). (49)

Table II gives the RMSE and CRLB for scenarios 1
and 2. It also lists the results of the scenario 2 (under
2∗) obtained in [26], where the same drone path was
used,butGPS altitudewas assumed perfect without bias.
It can be seen that the estimate RMSEs of scenario 1
are close to their CRLBs. The algorithm is statistically
efficient in this scenario, as shown in the next subsec-
tion. However, the results of scenario 2 are significantly
less accurate. The CRLBs are significantly larger than
those of scenario 1, especially for ε and � with values
32.21 mdeg and 475 mm, respectively. This indicates the
observabilities of ε and � are marginal in this scenario.

We plot the drone trajectories as seen by the cam-
era and the GPS converted positions in the image space
for scenarios 1 and 2 in Figs. 7 and 8, respectively. The
parameters used for GPS conversion are set the same
as the true values, except for the two marginally observ-
able parameters ε and �. The true values are ε = 4.1o

and � = 10 m, respectively. The values used in the GPS
conversion are ε = 2o and � = 0 m, respectively. It
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Fig. 7. Measured and GPS converted trajectories of scenario 1,
where the actual and nominal yaw, roll, and time difference are set to
the same values as α = 32o, ρ = 2.3o, and τ = 1.35 s, respectively. The

actual and nominal pitches are ε = 4.1o and 2o, respectively. The
actual and nominal GPS altitude bias are 10 m and 0 m, respectively.

can be seen that the true and the GPS converted tra-
jectories for scenario 1 (Fig. 7) are quite different. This
is mainly because the longer vertical edge is at near
range 200 m, and the shorter vertical edge is at farther
range 500 m. One cannot match them without correct
values on both ε and �.However, the trajectories for sce-
nario 2 (Fig. 8) are almost parallel. Since the two legs on
the drone path are at similar range, one can change ei-
ther GPS altitude or pitch to match the two trajectories.
Furthermore,we can also observe that the difference be-
tween the RMSE and σCRLB for ε and � are also signifi-
cantly larger in scenario 2 than those of scenario 1. The
algorithm does not perform well when the problem ob-
servability is marginal, as in scenario 2, which does not
meet the design principle of Scenario 1.

Comparing scenarios 2 and 2∗, we can see that in-
cluding GPS altitude bias (which is generally present)

−500 0 500 1000 1500 2000
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Fig. 8. Measured and GPS converted trajectories of scenario 2,
where the actual and nominal yaw, roll, and time difference are set to
the same values as α = 32o, ρ = 2.3o, and τ = 1.35 s, respectively. The
actual and nominal pitch are ε = 4.1o and 2o, respectively. The actual

and nominal GPS altitude bias are 10 m and 0 m, respectively.
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Fig. 9. NEES of 100 runs of the scenario 1.

significantly increases the estimation error using the
drone path recommended in [26]. The path is not prac-
tical for camera calibration when GPS altitude bias is
taken into consideration. The reason is that the trajec-
tory of scenario 2 has poor observerbility when both
GPS altitude and camera pitch are unknown.

Another interesting observation is the estimation ac-
curacy of τ is smaller than the GPS time discretiza-
tion of 100 ms. The best RMSE reaches 0.27 ms in test
scenario 1. This shows that the trajectory estimation
algorithm described in Section IV overcomes the dis-
cretization of the GPS trajectory problem effectively.

B. Statistical Efficiency

The statistical efficiency analysis was conducted us-
ing the NEES [2] computed w.r.t. the CRLB, namely,

εi(tk) = (θ − θ̂ )′P−1(θ − θ̂ ) (50)

where θ̂ and θ are the parameter estimate and true
value, respectively. The NEESs of N = 100 runs were
recorded and the analysis is carried out for each run, as
well as using the average. The NEES of the parameter
(with dimension 5) is a 5◦ of freedom chi-square ran-
dom variable if the errors are Gaussian. Its two-sided
p = 95% probability region is [0.8, 12.8]. The estima-
tion is statistically efficient, if 95% of NEESs are within
this region. Figures 9–10 show the NEES for the two test
scenarios, and the number of NEES out of the region
[0.8, 12.8] for scenario 1 is 0 (versus the expected value
of 5), i.e., the algorithm produced statistically efficient
estimates—consistent with equality in the CRLB. How-
ever, the number of NEES out of the this interval from
100 runs is scenario 2 is 9. This shows that the estima-
tion algorithm for a marginally observable scenario is
marginally statistically efficient.This is because the stan-
dard deviation of the number of exceedances of the 95%
probability interval is

√
Np(1 − p) ≈ 2, thus the border-

line efficiency.
For the average NEES over 100 runs, the 95% prob-

ability region, based on χ2
500/100, is the interval [4.1
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Fig. 10. NEES of 100 runs of the scenario 2.

5.63]. For scenario 1, the average NEES is 4.69,while for
scenario 2, it is 5.86. Thus, the same conclusions can be
drawn: for scenario 1, the algorithm is efficient, while for
scenario 2, it is borderline.

C. Impact of the Residual Biases

The real impact is further discussed based on the cal-
ibration result of scenario 1,which yields a good calibra-
tion result.The pixel bias error in the image space caused
by the residual calibration errors should be much lower
than the measurement error, so that the residual calibra-
tion errors are negligible. We compute the pixel bias er-
ror based on the calibration RMSE of yaw, pitch, roll,
and their combination. The residual bias error impact
is obtained from the shifted distances (the unit of mea-
sure is pixel) for uniformly distributed 5 × 5 pixel grid
elements covering the whole image space6 (1–2160 in xI,
1–3840 in yI) when the residual yaw, pitch, and roll errors
are introduced. The residual bias error of the kth grid is

bk = |(x̆Ik, y̆Ik) − (xIk, y
I
k)|, (51)

where (xIk, y
I
k) is the center of the kth grid element in

pixel units and (x̆Ik, y̆
I
k) is the shifted grid center when

the residual calibration errors are added to the nomi-
nal yaw, pitch, and roll; bk is the distance in pixel units
between these two grids. We recorded the residual er-
rors bk of all the grids and plot them in Fig. 11 for three
cases. Case (a) has 0.23 mdeg calibration error added to
yaw only. Cases (b) and (c) have 0.87 mdeg error added
to pitch and 2.9 mdeg error added to roll, respectively.
Figure 12 shows the effect of the combination of yaw,
pitch, and roll errors. Case (a) increases the yaw, pitch,
and roll by 0.23 mdeg, 0.87 mdeg, and 2.9 mdeg, re-
spectively. Case (b) reduces the yaw, pitch, and roll by
0.23 mdeg, 0.87 mdeg, and 2.9 mdeg, respectively. The

6The errors for each pixel in such a small grid are practically the same,
so there is no point in evaluating the impact of the errors in each pixel
separately.
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Fig. 11. Biased errors on all 5 × 5 grids. (a) The biased error caused
by calibration error on yaw of 0.23 mdeg. (b) The biased error caused

by calibration error on pitch of 0.87 mdeg. (c) The biased error
caused by calibration error on roll of 2.9 mdeg.

statistics of the grid biases are summarized in Table III.
It shows the bias min., max., mean, standard deviation,
and root mean square (RMS) value for the five cases in
Figs. 11 and 12. From these results, we observe the fol-
lowing:

� The residual bias error is negligible compared to the
measurement error. The highest RMSE due to the
residual bias is 0.20 pixel. The measurement RMSE
in one coordinate (either xI or yI) is 1 pixel.Assuming
they are uncorrelated between the coordinates, the to-
tal measurement error standard deviation is 1.41 pixel.
The highest RMSE due to residual bias is 7.2 times
smaller than the measurement RMSE. Thus, the cali-

Table III
Biased Error in Pixel Caused by the Calibration Error

Calibration error Bias
(mdeg) (pixel)

α ε ρ Min. Max. Mean Sthv. RMS

0.23 0 0 0.050 0.050 0.050 0.000 0.050
0 0.87 0 0.187 0.192 0.189 0.001 0.189
0 0 2.90 0.000 0.110 0.064 0.025 0.059
0.23 0.87 2.90 0.134 0.285 0.210 0.033 0.200

−0.23 −0.87 −2.90 0.134 0.285 0.210 0.033 0.200

Fig. 12. Biased errors on all 5 × 5 grids. (a) Increases the yaw, pitch,
and roll by 0.23 mdeg, 0.87 mdeg, and 2.9 mdeg, respectively. (b)
Reduces the yaw, pitch, and roll by 0.23 mdeg, 0.87 mdeg, and

2.9 mdeg, respectively.

bration using the scenario 1 drone trajectory achieves
negligible bias error.

� A yaw error creates higher bias on the two verti-
cal edges, and pitch error creates higher bias on the
two horizontal edges, as shown in Fig. 11(a) and (b).
The differences between the edges and the center are,
however, very small.

� A roll error creates higher bias at the four corners, the
furthest distance to the center, and the center has zero
bias in Fig. 11(c). Nevertheless, the bias at the corners
is negligible.

� Acombined yaw,pitch, and roll error creates the high-
est bias at one of the corners from Fig. 12. However,
the max. 0.29 pixels is still negligible compared to
the measurement RMSE of 1.41 pixel. The max. com-
binedRMSE (measured and bias) is

√
1.412 + 0.292 =

1.44 pixel.

VI. CONCLUSIONS

In this paper, we develop a camera calibration al-
gorithm using drone trajectories recorded by a GPS
receiver. However, the recorded GPS data has an
unknown altitude bias and an unknown time offset
between the GPS and camera systems. The GPS trajec-
tories are discretized with a time interval of 0.1 s. The
paper developed a special ML/ILS algorithm dealing
with discretized GPS trajectories to estimate camera
orientation angles (yaw, pitch, and roll), GPS altitude
bias, and time offset simultaneously.The simulation tests
were conducted, and an appropriate drone trajectory is
recommended whose estimation results met the CRLB
and NEES requirements. The time offset estimation er-
ror was much smaller than the discretization of the GPS
reference trajectory (0.27 ms versus 100 ms). The rec-
ommended drone trajectory is suitable for practical use.
Its residual calibration bias RMSE was 14% of the mea-
surement error standard deviation, which is negligible.
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In our real camera setup and calibration experiments,
we realized that more work needs to be done along this
research. First, the camera’s focal length cannot be fixed
beforehand accurately. It needs to be adjusted during
setup based on the real situation. Due to a lack of ac-
curate equipment to measure a camera’s focal length, it
should be an additional camera parameter included in
the estimation. Second, the GPS equipment usually has
quantization errors in latitude and longitude. This error
cannot be ignored when a target is in a near range (with
ten-pixel quantization). The ILS algorithm proposed in
this paper needs to be further developed to handle these
types of errors.

APPENDIX A. THE IMPORTANCE OF BEING EARNEST
ABOUT RADIANS

When trigonometric functions are expressed as
Taylor expansion, one has to use radians as the unit of
measure. This can be illustrated using the following sim-
ple example, using the first-order Taylor expansion to
compute sin(30.01o). The answer should be 0.50015. If
we use degrees as the unit of measure, then we will have
wrong result as

sin(30.01o) = sin(30o + 0.01o)

≈ sin(30o) + 0.01o × [sin(30o)]′

≈ sin(30o) + 0.01o × cos(30o)

≈ 0.5 + 0.01 × 0.866

≈ 0.50866. (52)

If we use radians, then the correct result is

sin
(
30.01 × π

180

)
≈ sin

(
30 × π

180

)
+ 0.01 × π

180
cos

(
30 × π

180

)

≈ 0.5 + 0.00175 × 0.866

≈ 0.50015. (53)

Although sin(·) and cos(·) should give the same values
whether the units are degrees or radians, the small differ-
ence 0.01o in front of cos(·) in (52) leads to wrong result
in (53). Thus, angles must be converted to radians when
using series expansions.

APPENDIX B. DERIVATIVES FOR (40)

The iteration index j is omitted for simplicity. The
gradients needed are

[∇θhk(·)′]′ = ∂xIk
∂xCk

∂xCk
∂θ

k = 1 . . . n, (54)

∂xIk
∂xCk

=

⎡
⎢⎢⎢⎣

f

zCk
0 − f xCk

(zCk )
2

0
f

zCk
− f yCk
(zCk )

2

⎤
⎥⎥⎥⎦ , (55)

∂xCk
∂θ

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂xCk
∂α

∂xCk
∂ε

∂xCk
∂ρ

∂xCk
∂�

∂xCk
∂τ

∂yCk
∂α

∂yCk
∂ε

∂yCk
∂ρ

∂yCk
∂�

∂yCk
∂τ

∂zCk
∂α

∂zCk
∂ε

∂zCk
∂ρ

∂zCk
∂�

∂zCk
∂τ

⎤
⎥⎥⎥⎥⎥⎥⎦

, (56)

and

∂xCk
∂α

= �xk(cαsεsρ − sαcρ ) − �yk(sαsεsρ + cαcρ ),

(57)

∂xCk
∂ε

= �xksαcεsρ + �ykcαcεsρ + �zksεcρ, (58)

∂xCk
∂ρ

= �xk(sαsεcρ − cαsρ )

+�yk(cαsεcρ + sαsρ ) − �zkcεcρ, (59)

∂xCk
∂�

= cεsρ, (60)

∂xCk
∂τ

= ˆ̇x(tk + τ )(cαcρ + sαsεsρ )

+ ˆ̇y(tk + τ )(cαsεsρ − sαcρ ) − ˆ̇z(tk + τ )cεsρ,

(61)

∂yCk
∂α

= �xk(cαsεcρ + sαsρ ) + �yk(cαsρ − sαsεcρ ),

(62)

∂yCk
∂ε

= �xksαcεcρ + �ykcαcεcρ + �zksεcρ, (63)

∂yCk
∂ρ

= −�xk(sαsεsρ + cαcρ )

+�yk(sαcρ − cαsεsρ ) + �zkcεsρ, (64)

∂yCk
∂�

= cεcρ, (65)

∂yCk
∂τ

= ˆ̇x(tk + τ )(sαsεcρ − cαsρ )

+ ˆ̇y(tk + τ )(sαsρ + cαsεcρ ) − ˆ̇z(tk + τ )cεcρ,

(66)

∂zCk
∂α

= �xkcαcε − �yksαcε, (67)

∂zCk
∂ε

= −�xksαsε − �ykcαsε + �zkcε, (68)

∂zCk
∂ρ

= 0, (69)

∂xCk
∂�

= −sε, (70)
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∂zCk
∂τ

= ˆ̇x(tk + τ )sαcε + ˆ̇y(tk + τ )cαcε + ˆ̇z(tk + τ )sε,

(71)

where

�xk = x̂(tk + τ ) − xs, (72)

�yk = ŷ(tk + τ ) − ys, (73)

�zk = ẑ(tk + τ ) − � − zs. (74)

The point [x̂(tk + τ ), ŷ(tk + τ ), ẑ(tk + τ )] in (72)–(74)
on the drone trajectory and its velocity [ ˆ̇x(tk + τ ), ˆ̇y(tk +
τ ), ˆ̇z(tk + τ )] in (61), (66), and (71) have been estimated
in Section IV-A.

The unit of measure for the three angles α, ε, and ρ

has to be radians—see Appendix A.
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